Nonlinear Fitting of Iron Sorption on Bentonite to Theoretical Isotherm Models
DOI:
https://doi.org/10.15330/pcss.23.2.270-276Keywords:
bentonite, microwave, adsorption, iron, non-linear fittingAbstract
A comparative analysis of adsorption models application for the description of experimental isotherms of iron adsorption on two samples: natural bentonite and bentonite irradiated with microwave irradiation. Sorption isotherms are described using the theories of Langmuir, Freundlich, Redlich-Peterson and Langmuir-Freundlich. The constants and parameters of these equations are determined. Nonlinear fitting of experimental data to the theoretical models of isotherms showed that adsorption by native bentonite corresponds to the three-parameter Redlich-Peterson model, and microwave irradiated - to the Freindlich isotherm. This modeling allows to predict the maximum adsorption capacity, which is 37.7 mg / g of natural bentonite and 64.4 mg / g of the modified sample.
References
P.B. Tchounwou et al., Experientia Suppl. 101, 133 (2012); https://doi.org/10.1007/978-3-7643-8340-4_6.
V. Popovych, A. Gapalo. Ecol. Eng. 22(5), 96 (2021); https://doi.org/10.12911/22998993/135872.
B. Kaźmierczak, J. Molenda, M. Swat, Environ. Technol. Innov. 23, 101737 (2021); https://doi.org/10.1016/j.eti.2021.101737.
Y. Yuana, Zh. An, R. Zhang, X. Wei, B. Lai. J. Clean. Prod. 293, 126215 (2021); https://doi.org/10.1016/j.jclepro.2021.126215.
E. Cerrahoğlu Kaçakgil, S. Çetintaş. Sustain. Chem. Pharm. 22, 100468 (2021); https://doi.org/10.1016/j.scp.2021.100468.
R. Jayasree et al., Chemosphere 285, 131502 (2021); https://doi.org/10.1016/j.chemosphere.2021.131502.
L. Sysa, Yu. Rudyk, A. Kontsur, Ecological Safety 24, 45 (2017).
A. Kontsur, Yu. Rudyk, L. Sysa, Ya. Kyryliv, Ecological Safety 25, 38 (2018); https://doi.org/10.30929/2073-5057.2018.1.38-45.
L.V. Sysa, K.V. Stepova, M.A. Petrova, A.Z. Kontsur, Issues of Chemistry and Chemical Technology 5, 126 (2019); https://doi.org/10.32434/0321-4095-2019-126-5-126-134.
A. Kontsur, L. Sysa, M. Petrova, Eastern-European Journal of Enterprise Technologies 6, 26 (2017); https://doi.org/10.15587/1729-4061.2017.116090.
I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918); https://doi.org/10.1021/ja02242a004.
H.M.F. Freundlich, Z. Phys. Chem. 57, 385 (1906); https://doi.org/10.1515/zpch-1907-5723.
B. Al-Duri, G. McKay. Chem. Eng. J. 38, 23 (1988); https://doi.org/10.1016/0300-9467(88)80050-9.
H. Moon, W.K. Lee. J. Colloid. Interface Sci. 96(1), 162 (1983); https://doi.org/10.1016/0021-9797(83)90018-8.
O. Redlich, D.L. Peterson, J. Phys. Chem. 63, 1024 (1959); https://doi.org/10.1021/j150576a611.
A.P. Matthews, W.J. Jr. Weber, AIChE Symp. Ser. 73, 91 (1976).
J.F. Porter, G. McKay, K.H. Choy, Chem. Eng. Sci. 54, 5863 (1999); https://doi.org/10.1016/S0009-2509(99)00178-5.
D.W. Marquardt, J. Soc. Ind. App. Maths. 11, 431 (1963); https://doi.org/10.1137/0111030.
A. Kapoor, R.T. Yang. Gas Sep. Purif. 3(4), 187 (1989); https://doi.org/10.1016/0950-4214(89)80004-0.