Tuning the Optical, Electronic and Thermal Characteristics of Si3N4/PVA/PEO Solid State Structures for Electronics Devices

Authors

  • Hind Ahmed University of Babylon
  • Ahmed Hashim University of Babylon

DOI:

https://doi.org/10.15330/pcss.23.1.67-71

Keywords:

silicon nitride, energy gap, PEO, electronic properties, devices

Abstract

The present paper deals with design of Si3N4 doped PVA/PEO new structures  to use in different optic, electronic, photonic and electric approaches with distinguished  characteristics included few cost, high corrosion resistance, lightweight and good optical, thermal and electronic properties. The Si3N4/PVA/PEO structures were optimized and effectively simulated with a B3LYP / LanL2DZ primer. The structure stability, optical, thermal and electronic properties of Si3N4/PVA/PEO were studied. The obtained results indicated to the PVA/PEO/Si3N4 structures may be used for various optoelectronics devices with low cost and  high flexibly.

References

M. E. Lines & A. M. Glass, Principles and applications of ferroelectrics and related materials. Oxford university press, (2001); https://doi.org/10.1093/acprof:oso/9780198507789.001.0001.

A. Y. Liu, , & M. L. Cohen, Physical Review B, 41, (1990); https://doi.org/10.1103/PhysRevB.41.10727.

P. Reis, J. P. Davim, X. Xu, & J. M. F. Ferreira, Friction and wear behaviour of β-silicon nitride–steel couples under unlubricated conditions, Materials science and technology, 22, 2 (2006); https://doi.org/10.1179/174328406X74275.

X. Xu, T. Nishimura, N. Hirosaki, R. J. Xie, & H. Tanaka, Fabrication of a Nano-Si3N4/Nano-C Composite by High-Energy Ball Milling and Spark Plasma Sintering, Journal of the American Ceramic Society, 90, 4 (2007); https://doi.org/10.1111/j.1551-2916.2007.01593.x.

M. J. Frisch, & F. R. Clemente, Gaussian 09, Revision A. 01, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, G. Scalmani, V. Barone, B. Mennucci, GA Petersson, H. Nakatsuji, M. Caricato, X. Li, HP Hratchian, AF Izmaylov, J. Bloino, G. Zhe.‏

H. M. Kampen, H. Méndez, & D. R. T. Zahn, Energy Level Alignment at Molecular Semiconductor/GaAs (100) Interaces: Where is the LUM, University of Chemnitz, Institut fur, Germany, 28, (1999); https://www.tu-chemnitz.de/physik/HLPH/publications/p_src/438.pdf‏

K. Sadasivam, & R. Kumaresan, Theoretical investigation on the antioxidant behavior of chrysoeriol and hispidulin flavonoid compounds–A DFT study, Computational and Theoretical Chemistry, 963, 1 (2011); https://doi.org/10.1016/j.comptc.2010.10.025.

O. A. Kolawole, & S. Banjo, Theoretical Studies of Anti-corrosion Properties of Triphenylimidazole Derivatives in Corrosion Inhibition of Carbon Steel in Acidic Media via DFT Approach, Anal. Bioanal. Electrochem, 10, 1 (2018); 136-146.

P. W. Atkins, & R. S. Friedman, Molecular quantum mechanics, Oxford university press, (2011), http://sutlib2.sut.ac.th/sut_contents/H96900.pdf

V. Subramanian, Quantum Chemical Descriptors in Computational Medicinal Chemistry for Chemoinformatics, Central Leather Research Institute, Chemical Laboratory, (2005); ‏https://scholar.google.com/scholar?hl=ar&as_sdt=0%2C5&q=Subramanian%2C+V.+%282005%29.+Quantum+Chemical+Descriptors+in+Computational+Medicinal+Chemistry+for+Chemoinformatics.+Central+Leather+Research+Institute%2C+Chemical+Laboratory%2C+0-0000&btnG=

L. Shenghua, Y. He, & J. Yuansheng, Lubrication chemistry viewed from DFT-based concepts and electronic structural principles, International Journal of Molecular Sciences, 5, 1 (2004); https://doi.org/10.3390/i5010013.‏

A. J. Camargo, K. M. Honório, R. Mercadante, F. A. Molfetta, C. N. Alves, & A. B. da Silva, A study of neolignan compounds with biological activity against Paracoccidioidesbrasiliensis by using quantum chemical and chemometric methods, Journal of the Brazilian Chemical Society, 14, 5 (2003); https://doi.org/10.1590/S0103-50532003000500017.

P. Udhayakala, & T. V. Rajendiran, Computational investigations on the corrosion inhibition efficiency of some pyridine based alkaloids, Journal of Chemical, Biological and Physical Sciences (JCBPS), 2, 1 (2011); http://dx.doi.org/10.4236/ojmetal.2014.44009.

F. L. Riley, Silicon Nitride and Related Materials, Journal of the American Ceramic Society, 83, 2 (2000); https://doi.org/10.1111/j.1151-2916.2000.tb01182.x.

V. M. Bermudez, First-principles study of electron trapping by intrinsic surface states on β-Si3N4 (0001), Surf Sci., 691, (2020); https://doi.org/10.1016/j.susc.2019.121511.‏

P. Larkin, Infrared and Raman spectroscopy: principles and spectral interpretation, Elsevier Inc., ISBN 978-0-21-804162-8, 277(2013); https://books.google.iq/books?id=bMgpDwAAQBAJ&printsec=frontcover&hl=ar&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

V. Nagarajan, S.Venkatesan, R. Chandiramouli, DFT investigation on structural stability and electronic properties of α-Si3N4 and β-Si3N4 nanostructures International Journal of ChemTech Research, 6, 14, 5466-5475 (2014).

Downloads

Published

2022-02-13

How to Cite

Ahmed, H. ., & Hashim, A. (2022). Tuning the Optical, Electronic and Thermal Characteristics of Si3N4/PVA/PEO Solid State Structures for Electronics Devices. Physics and Chemistry of Solid State, 23(1), 67–71. https://doi.org/10.15330/pcss.23.1.67-71

Issue

Section

Scientific articles (Physics)