What is the true value of bulk band gap of lithium tetraborate single crystal?

Authors

  • Ya.V. Burak O.G. Vlokh Institute of Physical Optics
  • V.T. Adamiv O.G. Vlokh Institute of Physical Optics
  • I.M. Teslyuk O.G. Vlokh Institute of Physical Optics
  • I.Ye. Moroz Lviv Polytechnic National University
  • S.Z. Malynych Hetman Petro Sahaidachnyi National Army Academy

DOI:

https://doi.org/10.15330/pcss.23.1.113-119

Keywords:

lithium tetraborate, band gap, absorption edge, crystal structure

Abstract

Substantial variances in the bulk band gap of lithium tetraborate single crystal determined from numerous theoretical calculations as well as from experimental measurements give rise to the problem what is the true value of Eg for that crystal. In this review, we analyze in detail all available theoretical and experimental data regarding the bulk band gap published by different authors and suggest that the experimental value of = (7.5 ± 0.3) eV determined from the optical absorption edge is the most appropriate value. This is in good agreement with Eg = 7.5 eV calculated via modified linear combination of atomic orbitals (LCAO) method.

References

M. Natarajan, R. Faggini, I. Brown, Cryst. Struct. Comm. 8, 367 (1979).

K. Fukuta, J. Ushizawa, H. Suzuki, J. Ebata, S. Matsumura, Jpn. J. Appl. Phys. 22, 140 (1983); https://iopscience.iop.org/article/10.7567/JJAPS.22S2.140.

Bhalla, E. Cross, R. Whatmore, Jpn. J. Appl. Phys. 24, 727 (1985); https://iopscience.iop.org/article/10.7567/JJAPS.24S2.727.

V. D. Antsygin, V. A. Gusev, A. M. Yurkin, Avtometriya, N3, 16 (1996).

O. Antonyak, Ya. Burak, I. Lyseiko, M. Pidzyrajlo, Z. Khapko, Opt. Spectrosc. 61, 550 (1986).

B.G. Mytsyk, A.S. Andrushchak, D.M. Vynnyk, N.M. Demyanyshyn, Ya.P. Kost, A.V. Kityk, Optics and Lasers in Engineering, 127, 105991 (2020); https://doi.org/10.1016/j.optlaseng.2019.105991.

O. Krupych, O. Mys, T. Kryvyy, V. Adamiv, Ya. Burak, R. Vlokh, Appl. Opt. 55, 10457 (2016); https://doi.org/10.1364/AO.55.010457.

R. Komatsu et al., Appl. Phys. Lett. 70, 3492 (1997); https://doi.org/10.1063/1.119210.

G.C. Bhar, A.K. Chaudhary, P. Kumbhakar, A.M. Rudra, J. Phys. D: Appl. Phys. 34, 360 (2001); https://iopscience.iop.org/article/10.1088/0022-3727/34/3/319.

V. Petrov, F. Rotermund, F. Noack, J. Appl. Phys. 84, 5877 (1998); https://doi.org/10.1063/1.368904.

B. Sastry, F. Hummel, J. Am. Ceram. Soc. 41, 7 (1958); https://doi.org/10.1111/j.1151-2916.1958.tb13496.x.

J. Garrett, M. Iyer, J. Greedan, J. Cryst. Growth 41, 225 (1977); https://doi.org/10.1016/0022-0248(77)90049-5.

R. Komatsu, T. Sugihara, S. Uda, Jpn. J. Appl. Phys. 33, 5533 (1994); https://iopscience.iop.org/article/10.1143/JJAP.33.5533.

J. Tsutsui, Y. Ino, N. Sanguttuvan, M. Ishii, J. Cryst. Growth 211, 271 (2000); https://doi.org/10.1016/S0022-0248(99)00860-X.

J. Xu, S. Fan, B. Lu, J. Cryst. Growth 264, 260 (2004); https://doi.org/10.1016/j.jcrysgro.2003.12.040.

M. Takeuchi, H. Odagawa, M. Tanaka, K. Yamanouchi, Jap. J. Appl. Phys. 36, 3091 (1997); https://iopscience.iop.org/article/10.1143/JJAP.36.3091.

C. Furetta, P. Weng, Operation Thermoluminescent Dosimetry (World Scientific, London, 1998).

Ya.V. Burak, B.V. Padlyak, V.M. Shevel, Nucl. Instr. Meth. In Phys. Res. B 191, 633 (2002); https://doi.org/10.1016/S0168-583X(02)00624-9.

Sangeeta, K. Chennakesavulu, D.G. Desai, S.C. Sabharwal, M. Alex, M.B. Chodgaonkar, Nucl. Instr. Meth. Phys. Res. A 571, 699 (2007); https://doi.org/10.1016/j.nima.2006.10.401.

Z. G. Marzouk, A. Dhingra, Y. Burak, V. Adamiv, I. Teslyuk, P. A. Dowben, Materials Letters, 97, 129978 (2021); https://doi.org/10.1016/j.matlet.2021.129978.

T. Nakamura, M. Katagiri M, Y.E. Chen, M. Ukibe M, M. Ohkubo, Nucl. Instr. Meth. Phys. Res. A 559, 766 (2006); https://doi.org/10.1016/j.nima.2005.12.131.

M. Katagiri, Nucl. Instr. Meth. Phys. Res. A 559, 742 (2006); https://doi.org/10.1016/j.nima.2005.12.124.

N. Benker et al., Rad. Meas. 129, 106190 (2019); https://doi.org/10.1016/j.radmeas.2019.106190.

J. Krogh-Moe, Acta Cryst. 15, 190 (1962); https://doi.org/10.1107/S0365110X6200050X.

J. Krogh-Moe, Acta. Cryst. B 24, 179 (1968); https://doi.org/10.1107/S0567740868001913.

W. H. Zachariasen, Acta Cryst. 17, 749 (1964); https://doi.org/10.1107/S0365110X64001839.

V. T. Adamiv, Ya. V. Burak, I. M. Teslyuk, J. Alloy. Compd. 475, 869 (2009); https://doi.org/10.1016/j.jallcom.2008.08.017.

S. Radaev, L. Muradyan, L. Malakhova, Ya. Burak, V. Simonov, Crystallogr. Reports 34, 1400 (1989).

Senyshyn et al., J. Appl. Phys. 108, 093524 (2010); https://doi.org/10.1063/1.3504244.

Senyshyn et al., J. Phys. D: Appl. Phys. 45, 175305 (2012); https://doi.org/10.1088/0022-3727/45/17/175305.

Ya. V. Burak, I. E. Moroz, Physics and Chemistry of Glasses 44(3), 241 (2003).

Ya. Burak, Ya. Dovgyi, I. Kityk, Phys. Solid State 31, 275 (1988).

V. Adamiv et al., Opt. Mater. 8, 207 (1997); https://doi.org/10.1016/S0925-3467(97)00017-7.

V. Maslyuk, M. Islam, Th. Bredow, Phys. Rev. B 72, 125101-8 (2005); https://doi.org/10.1103/PhysRevB.72.125101.

M. Islam, V. Maslyuk, T. Bredow, C. Minot, J. Phys. Chem. B. 109, 13597 (2005); https://doi.org/10.1021/jp044715q.

M. Islam, T. Bredow, C. Minot, J. Phys. Chem. B 110, 117518 (2006); https://doi.org/10.1021/jp061785j.

P. K Jangid, G. Arora, D. Mali, P K Joshi, K. Kumar, B L. Ahuja, Journal of Physics: Conference Series 1504, 012017 (2020); https://doi.org/10.1088/1742-6596/1504/1/012017.

Santos, A.F. Lima, M.V. Lalic, Computational Materials Science 95, 271 (2014); http://dx.doi.org/10.1016/j.commatsci.2014.07.038.

Podgorska, S. Kaczmarek, W. Drozdowski, M. Berkowski, A. Worcztynowicz, Acta Phys. Pol. A 107, 507 (2005); https://doi.org/10.12693/APhysPolA.107.507.

T. Sugawara, R. Komatsu, S. Uda, Sol. State Commun. 107, 233 (1998); https://doi.org/10.1016/S0038-1098(98)00190-2.

[41] D. Wooten et al., Eur. Phys. J. Appl. Phys. 52, 31601-p7 (2010); https://doi.org/10.1051/epjap/2010160.

V. Adamiv et al., Materials 3, 4550 (2010); https://doi.org/10.3390/ma3094550.

Y. Moustafa, A. Hassan, G. El-Damrawi, N. Yevtushenko, J. Non-Cryst. Solids 194, 34 (1996); https://doi.org/10.1016/0022-3093(95)00465-3.

Wooten et al., Physica B 405, 461 (2010); https://doi.org/10.1016/j.physb.2009.08.312.

B. Padlyak et al., Mat.Sci.-Poland 30, 264 (2012); https://doi.org/10.2478/s13536-012-0032-1.

Ogorodnikov et al., Phys. Solid State 42, 464 (2000); https://doi.org/10.1134/1.1131232.

Ya. Burak, G. Hyckaylo, M. Pidzyraylo, I. Stephanskiy, Ukr. J. Phys. 32, 1509 (1987).

C. Thierfelder, S. Sanna, A. Schindlmayr, W. G. Schmidt, Phys. Status Solidi C 7(2), 362 (2010); https://doi.org/10.1002/pssc.200982473.

Downloads

Published

2022-03-13

How to Cite

Burak, Y., Adamiv, V., Teslyuk, I., Moroz, I., & Malynych, S. (2022). What is the true value of bulk band gap of lithium tetraborate single crystal?. Physics and Chemistry of Solid State, 23(1), 113–119. https://doi.org/10.15330/pcss.23.1.113-119

Issue

Section

Scientific articles (Physics)

Most read articles by the same author(s)