Physicochemical and Electrocatalytic Performance of Chromium doped Iron Pyrite Thin Films

Authors

  • P. Prabukanthan Muthurangam Government Arts College
  • M. Sreedhar Muthurangam Government Arts College
  • G. Harichandran University of Madras
  • T. Tatarchuk Vasyl Stefanyk Precarpathian National University
  • K. Dinakaran Thiruvalluvar University
  • S. Uthayakumar Royal Holloway University of London
  • A. Younis University of Bahrain

DOI:

https://doi.org/10.15330/pcss.23.1.134-143

Keywords:

Electrochemical deposition, semiconductor thin films, pyrite, impedance spectroscopy, electrocatalytic activity, surface analysis

Abstract

Chromium (Cr3+) doped iron pyrite (FeS2) thin films were deposited on ITO substrate by a facile electrochemical deposition process. The effect of chromium content on structural, optical, electrical, morphological, and electrocatalytic behavior of the pyrite thin films were examined. X - ray diffraction studies confirmed the formation of cubic crystal structure of deposited thin films. Atomic force microscopy results indicate that Cr3+ doping has strong influence on crystallinity, surface roughness and grain size of as-deposited thin films. Further, bandgap reduction was found in Cr3+ doped FeS2 thin films. The interfacial charge resistance of fabricated thin films was investigated by electrochemical impedance spectroscopy and 3 mole % Cr3+ doped FeS2 thin films showed excellent conductivity with a low charge transfer resistance of 49 .  Further, the electrocatalytic performance of the prepared pyrite thin films was investigated. Cr doped thin films were found to exhibit better performance. Anti-structural modeling was opted to investigate the characteristics of defects in fabricated thin films and it was established that Cr3+substitutionmay form cation (Fe2+) vacancies which could be responsible for enhanced photochemical and electrochemical activities in Cr-doped FeS2 thin films.

References

Y. Liang, P. Bai, J. Zhou, T. Wang, B. Luo and S. Zheng, Cryst. Eng. Comm. 18, 6262 (2016); https://doi.org/10.1039/C6CE01203E.

A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonsovante, K. Buker, M. Bronold, C. Hopfner and H. Tributsch, Sol. Energy Mater. Sol. Cells. 29, 289 (1993); https://doi.org/10.1016/0927-0248(93)90095-K.

A. Kirkeminde, P. Gingrich, M. Gong, H. Cui and S. Re, Nanotechnology 25, 205603 (2014); https://doi.org/10.1088/0957-4484/25/20/205603.

P. Prabukanthan, S. Thamaraiselvi and G. Harichandran, J. Mater. Sci. Mater. Electron 29, 11951 (2018); https://doi.org/10.1007/s1085 4-018-9297-4.

A. Pascual, S. Yoda, M. Barawi, J.M. Clamagirand, J.R. Ares, I.J. Ferrer and C. Sanchez, J. Phys. Chem. C 118, 26440 (2014); https://doi.org/10.1021/jp505303d.

S. Shukla, W. Ager Joel, Q. Xiong, and T. Sritharan, Energy Technol. 6, 8 (2018); https://doi.org/10.1002/ente.201700638.

F. Liu, J. Zhu, L. Hu, B. Zhang, J. Yao, M.K. Nazeeruddin, M. Gratzel and S. Dai, J. Mater. Chem. A 3, 6315 (2015) https://doi.org/10.1039/C5TA00028A.

M.R. Gao, Y.F. Xu, J. Jiang and S.H. Yu, Chem. Soc. Rev. 42, 2986 (2013); https://doi.org/10.1039/C2CS35310E.

D. Liang, R. Ma, S. Jiao, G. Pang and S. Feng, Nanoscale 4, 6265 (2012); https://doi.org/10.1039/C2NR31193C.

J. Jiang, L. Zhu, H. Chen, Y. Sun, H. Lin, S. Han, J. Alloys Compds. 775, 1293 (2019); https://doi.org/10.1039/C3RA46248J.

Sadia Khalid, M. Azad Malik, J. Lewis David, P. Kevin, E. Ahmed, Y. Khan, Paul O’Brien, J Mater Chem C. 3, 12068 (2015); https://doi.org/10.1039/C5TC03275J.

P. Prabukanthan, S. Thamaraiselvi and G. Harichandran, J. Electrochem. Soc. 164, 581 (2017); https://doi.org/10.1149/2.09917 09jes.

G. Chatzitheodrou, S. Fiechter, M. Kunst, W. Jaegermann and H. Tributsch, Mater. Res. Bull. 21, 1481 (1986); https://doi.org/10.1016/0025-5408(86)90088-7.

B. Meester, L. Reijnen, A. Goossens and J. Schoonman, Chem. Vap. Deposition 3, 121 (2000); https://doi.org/10.1002/(SICI)1521-3862(200006)6.

E.J. Kim and B. Batchelor, Mater. Res. Bull. 44, 1553 (2009); https://doi.org/10.1016/j.materresbull.2009.02.006.

D. Wan, Q. He, L. Zhang, Q. Jia, R. Zhang, H. Zhang, B. Wang and L. Wei, J. Crystal Growth 268, 222 (2004); https://doi.org/10.1016/j.jcrysgro.2004.05.014.

D. Lichtenberger, K. Ellmer, R. Schieck, S. Fiechter and H. Tributsch, Thin Solid Films 246, 6 (1994); https://doi.org/10.1016/0040-6090(94)90723-4.

I. Ferrer, F. Cabellero, C. De las Heras and C. Sanchez, Solid State Commun. 89, 349 (1994); https://doi.org/10.1016/0038-1098(94)90598-3.

S. Lehner, N. Newman, M. Van Schilfgaarde, S. Bandyopadhyay, K. Savage and P. Buseck, J. Appl. Phys. 111, 083717 (2012); https://doi.org/10.1063/1.4706558.

J. Jiao, L. Chen, D. Kuang, W. Gao, H. Feng and J. Xia, RSC Adv. 1, 255 (2011); https://doi.org/10.1039/C1RA00066G.

W. Ding, X. Wang, H. Peng, Z. Peng and B. Dong, Mater. Res. Bull. 48, 4704 (2013); https://doi.org/10.1016/j.materresbull.2013.08.022.

R.J. Soukup, P. Prabukanthan, N.J. Ianno, A. Sarkar, C.A. Kamler, and D.G. Sekora, J. Vac. Sci. Technol. A. 29, 011001 (2011); https://doi.org/10.1116/1.35177 39.

S. Khalid, E. Ahmed, M.A. Malik, David Lewis and S. Abu Bakar, New J. Chem. 39, 1013 (2015); https://doi.org/10.1039/C4NJ01461H.

S.S. Starchikov, I.S. Lyubutin, Chun-Rong Lin, Yaw-Teng Tseng, K.O. Funtov, Yu Ogarkova, T.V. Dmitrieva and A.G. Ivanova, Phys. Chem. Chem. Phys. 17, 15829 (2015); https://doi.org/10.1039/C5CP01846C.

A. Akbar, Muntaha Niaz, Saira Riaz and S. Naseem, Materials Today: Proc. 2, 5679 (2015); https://doi.org/10.1016/j.matpr.2015.11.109.

A.E. Kandjania, M.F. Tabriza, O.M. Moradia, H.R. Mehra, S. Ahmadi Kandjanib, and M.R. Vaezia, J. Alloy Com. 509, 785 (2011); https://doi.org/10.1016/j.jallcom.2011.01.133.

N. Barreau, J. C. Bernede, S. Marsillac and A. Mokrani, J. Crystal Growth 235, 439 (2002); https://doi.org/10.1016/S0022-0248(01)02040-1.

P. Prabukanthan, R.J. Soukup, N.J. Ianno, A. Sarkar, C.A. Kamler, E.L. Extrom, J. Olejnicek and S.A. Darveau, Chemical bath deposition (CBD) of iron sulfide thin films for photovoltaic applications, crystallographic and optical properties, Proceedings of the 35th Photovoltaics specialists Conference, Institute of Electrical and electronics Engineers (IEEE) 002965 (2010); https://doi.org/10.1109/PVSC.2010.56144 65.

P. Prabukanthan, M. Sreedhar, S. Thamaraiselvi, G. Harichandran, P. Seenuvasakumaran, Marlia Hanafiah and Carlos Fernandez, J. Mater. Sci: Mater. Electron. 32, 6331 (2021); Photoelectrochemical applications of electrochemical deposition of Ni2+-doped FeS2 thin films, https://doi.org/10.1007/s10854-018-00599-w.

J.H. Kim, H. Kim, D. Kim, S.G. Yoon and W.K. Choo, Solid State Comm. 131, 677 (2004); https://doi.org/10.1016/j.ssc.2004.06.033.

P. Prabukanthan and R. Dhanasekaran, J. Physics D: Appl. Phys. 41, 115102 (2008); https://doi.org/10.1088/0022-3727/41/11/115102.

R. Chand, E. Obuchi, K. Katoh, H. N. Luite and K. Nakano, J. Environ. Sci. 25, 1419 (2013); https://doi.org/10.1016/S1001-0742(12)60211-3.

P. Prabukanthan, S. Thamaraiselvi, G. Harichandran and J. Theerthagiri, J. Mater. Sci.: Mater. Electron. 30, 3268 (2019); https://doi.org/10.1007/s10854-018-00599.

P. Prabukanthan, R. Lakshmi, G. Harichandran and T. Tatarchuk, New J. Chem. 42, 11642 (2018); https://doi.org/10.1039/c8nj01056k.

T. Rajesh Kumar, P. Prabukanthan, G. Harichandran, J. Theerthagiri, A. MeeraMoydeen, G. Durai, P. Kuppusami and Tetiana Tatarchuk, J. Mat. Sci.: Mat. Electro. 29, 5638 (2018); https://doi.org/10.1007/s10854-018-8533-2.

T. RajeshKumar, P. Prabukanthan, G. Harichandran, J. Theerthagiri, Tetiana Tatarchuk, T. Maiyalagan, J. Solid State Electrochem. 22, 1197 (2018); https://doi.org/10.1007/s10008-017-3865-z.

Xiaoliang Liang, Yuanhong Zhong, Hongping He, PengYuan, Jianxi Zhu, Sanyuan Zhu, Zheng Jiang, Chem. Eng. J. 191, 177 (2012); https://doi.org/10.1016/j.cej.2012.03.001.

Rui Ribeiro, M. T. Adrián, Silva, José Figueiredo, Joaquim Faria and Helder Gomes, Catal. Today. 296, 66 (2017); https://doi.org/10.1016/j.cattod.2017.06.023.

Downloads

Published

2022-03-13

How to Cite

Prabukanthan, P., Sreedhar, M., Harichandran, G., Tatarchuk, T., Dinakaran, K., Uthayakumar, S., & Younis, A. (2022). Physicochemical and Electrocatalytic Performance of Chromium doped Iron Pyrite Thin Films. Physics and Chemistry of Solid State, 23(1), 134–143. https://doi.org/10.15330/pcss.23.1.134-143

Issue

Section

Scientific articles (Chemistry)