Kinetic regularities of the formation of composite electrolytic coatings containing ultradispersed diamond particles
DOI:
https://doi.org/10.15330/pcss.23.3.461-467Keywords:
ultrafine diamond particles, electrodeposition, laser stimulation of the electrodeposition process, composite electrolytic coatings, mechanical propertiesAbstract
The paper formulates the problem of joint electrolytic co-deposition of metal ions and ultradispersed diamond particles into a metal matrix. It presents the developed mathematical model that describes the mechanism and kinetics of the cathode process, mass transfer of metal ions and ultradispersed diamond particles. A satisfactory correlation with experimental data was obtained. The contribution of the thermal action of laser radiation to the intensification of the process of co-deposition of dispersed particles and metal ions was determined. It was found that the more intense penetration of dispersed phase particles into the forming coating during the laser stimulation of the electrodeposition process is due to the presence of a temperature gradient, which provides an additional supply of metal ions in the irradiation region. Based on the theoretical and experimental studies, we established the regularities of the influence of the number and size of nanoparticles on the strengthening properties of composite metal coatings. It was found that an increase in the temperature of an aqueous electrolyte solution in the cathode region during a laser-stimulated deposition process leads to an increase in the flux density of ultradispersed diamond particles, and, as a result, to an increase in the concentration of the dispersed phase in nickel composite coatings, which contributes to the formation of a finer crystalline structure of coatings, an improvement in adhesion, strength properties and increased wear resistance of coatings.
References
M. Takai, K. Hayashi, M. Aoyagi, T. Osaka, Electrochemical Preparation of Soft Magnetic CoNiFeS Film with High Saturation Magnetic Flux Density and High Resistivity. Journal of The Electrochemical Society 144(7), 203 (1997).
E. Gomez, S. Pane, E. Valles, Magnetic composites CoNi–barium ferrite prepared by electrodeposition. Electrochemistry Communications 7, 1225 (2005); https://doi.org/10.1016/j.elecom.2005.08.016 .
B.Y. Yoo, S.C. Hernandez, D.-Y. Park, N.V. Myung, Electrodeposition of FeCoNi Thin Films for Magnetic MEMS devices. Electrochimica Acta 51, 6346 (2006); https://doi.org//J.ELECTACTA.2006.04.020 .
P. R. Ebdon, The performance of electroless nickel/PTFE composites. Plating and Surface Finishing 75, 65 (1988).
J.L. Talbot, Investigation of electrocodeposition using a rotating cylinder electrode. Journal of The Electrochemical Society 146, 4504 (1999).
T. Osaka, Takai M., K. Hayashi, K. Ohashi, M. Satto, K. Yamada, A soft magnetic CoNiFe film with high saturation magnetic flux density and low coecivity. Nature, 392, 796 (1998); https://doi.org/10.1038/33888 .
G.A. Malone, Electrodeposition of Dispersion-Strengthened Alloys. Plating and surface finishing, 78, 58 (1991).
V.A. Zabludovsky, E.Ph. Shtapenko, V.V. Tytarenko Program pulsed electrolysis of metals and composite materials, 2019). [in russian]
V. V. Tytarenko, V. A. Zabludovsky, E. Ph. Shtapenko, Structure and properties of composite nickel coatings deposited by means of programmable pulsed current under laser irradiation. Inorganic materials: applied research, 10(3), 589 (2019); https://doi.org/10.1134/S2075113319030419 .
V.V. Tytarenko, V.A. Zabludovs'kyy, The effect of superdispersed diamond particles on the structure and properties of electrolytic nickel coatings. Metallofizika I Noveishie Tekhnologii 38(4), 519 (2016); https://doi.org/10.15407/mfint.38.04.0519 .
V.A. Zabludovsky, V.V. Dudkina, E.Ph. Shtapenko, Laser-assisted electrodeposition of metals (Lambert Academic Publishing, Saarbrücken, 2014). [in russian]
V.Yu. Dolmatov, Ultra-dispersed diamonds of detonation synthesis. Receiving, properties, application (SPPU: SPSPU, 2003). [in russian]
A.S. Barnard, M. Sternberg, Crystallinity and surface electrostatics of diamond nanocrystals. Journal of Materials Chemistry 17(45), 4811 (2007); https://doi.org/10.1039/B710189A .
A.S. Barnard, Self-assembly in nanodiamond agglutinates. Journal of Materials Chemistry 18(34), 4038 (2008); https://doi.org/10.1039/B808511K .
Nonferrous metals. Analysis methods. General requirements: Collection of GOSTs (Publishing house of standards, Moscow, 2002.) [in russian]
A.V. Kovalenko, M.A. Urtenov Boundary Value Problems for the System of Electrodiffusion Equations. Part 1. One-dimensional problems (Lambert Academic Publishing, Saarbrücken, 2011). [in russian]
I.P. Hansen, Y.R. Makdonald, Thery of Simple Liquids (Academic Press, London, 2003).
A.S. Chopchiyan, Ye.N. Korzhov, Boundary Value Problems for the Nernst-Planck and Poisson Equations. In the world of scientific discoveries 4-11 (10), 28 (2010). [in russian]
E. Ph. Shtapenko, V.A. Zabludovsky, V.V. Dudkina, Diffusion at the boundary between the film and substrate upon the electrocrystallization of zinc on a copper substrate. The Physics of Metals and Metallography 116(3), 256 (2015); https://doi.org/10.1134/S0031918X15030126 .
V.V. Tytarenko, V.A. Zabludovsky, E.P. Shtapenko, I.V. Tytarenko, S.A. Grishechkin, Structuring of micro-layered nickel coatings obtained by program-controlled current. Metallofizika i Noveishie Tekhnologiithis 42(3), 351 (2020); https://doi.org/10.15407/mfint.42.03.0333
E. Ph. Shtapenko, V.A. Zabludovsky, V.V. Tytarenko, R.P. Ganich, Pulse current electric rhodium plating. Galvanotechniknik 112, 317 (2021).
V.V. Tytarenko, E.Ph. Shtapenko, E.О. Voronkov, V.A. Zabludovsky, W. Kolodziejczyk, K. Kapusta, V.N. Kuznetsov, Quantum mechanical modeling of the interaction of carbon nanostructures with metal ions. Journal of surface investigation: X-ray, synchrotron and neutron techniques 15(4), 866 (2021); https://doi.org/10.1134/S102745102104039X .
V.V. Tytarenko, E.Ph. Shtapenko, E.O. Voronkov, Aruna Vangara, V.A. Zabludovsky, Wojciech Kolodziejczyk, K. Kapusta, S.I. Okovytyy, Adsorption of Co, Ni, Cu, Zn metal ions on fullerene C60 and on single-wall carbon nanotubes C48 as a driven force of composite coatings’ electrodeposition. Journal of Chemistry and Technologies 29(1), 42 (2021); https://doi.org/10.15421/082108 .
E. F. Shtapenko, V. V. Tytarenko, V. A. Zabludovsky, E. O. Voronkov, Quantum mechanical approach for determining the activation energy of surface diffusion. Physics of the Solid State 62(11), 2191 (2020); https://doi.org/10.1134/S1063783420110311 .
O.N. Grigorov, Electrokinetic Phenomena (LSU, Leningrad, 1973). [in russian]
V.A. Zabludovsky , V.V. Tytarenko, E. Ph. Shtapenko, Laser-enhanced electrodeposition of nickel coatings. Transactions of the IMF 95(6), 337 (2017); https://doi.org/10.1080/00202967.2017.1355463 .
Dai Xueren, Xu Kun, Zhang Zhaoyang, Zhang Lingyue, Wu Yucheng, Zhu Hao, Yang Shuai, Study on Cu-Al2O3 metal-matrix composite coating prepared by Laser-assisted electrodeposition. Journal of Electroanalytical Chemistry 904(1), 115855 (2021); https://doi.org/10.1016/j.jelechem.2021.115855 .
T. Hill, P. Lewicki, Statistics methods and applications (StatSoft, Tulsa, OK, 2007).
V.V. Tytarenko, V.A. Zabludovsky, E. Ph. Shtapenko, Model of dispersed phase particle distribution in a composite electrolytic coating. Metallography, Microstructure, and Analysis, Springer 9(5), 651 (2020); https://doi.org/10.1007/s13632-020-00679-6 .
A. Eshkin, Pressure of laser radiation. Advances in the physical sciences 110 (1), 101 (1973). [in russian].