The structure of the Zr-Cu-Al melts in the glass forming range of concentrations.

Authors

  • I. Shtablavyi Ivan Franko National University of Lviv, Lviv, Ukraine
  • N. Popilovskyi Ivan Franko National University of Lviv, Lviv, Ukraine
  • S. Mudry Ivan Franko National University of Lviv, Lviv, Ukraine
  • O. Poplavskyi Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

DOI:

https://doi.org/10.15330/pcss.23.2.416-423

Keywords:

metal alloys, atomic structure, coordination numbers, cluster structure

Abstract

The short-range order structure of the Zr47,5Cu47,5Al5 and Zr40Cu40Al20 melts   was investigated by the method of molecular dynamics simulations. Based on the obtained results, partial pair correlation functions and distributions of partial coordination numbers have been calculated. The main structure parameters determined from these functions were compared with similar parameters for amorphous alloys. According to the results of research, the presence of both homocoordinated and heterocoordinated clusters in the melts, which form a cluster solution, was established. The assumption of the presence of heterocoordinated icosahedral clusters is made.

References

Z. Altounianand, J. O. Strom-Olsen, Superconductivity and spin fluctuations in M−Zr metallic glasses (M=Cu,Ni,Co,and Fe), Phys. Rev. 27, 4149 (1983); https://doi.org/10.1103/PhysRevB.27.4149.

K H J Buschow, Short-range order and thermal stability in amorphous alloys, Journal of Physics F: Metal Physics 14(3), 593 (1984); https://doi.org/10.1088/0305-4608/14/3/005.

D. Xu, B. Lohwongwatana, G. Duan, W L. Johnson, C. Garland, Bulk metallic glass formation in binary Cu-rich alloy series – Cu100−xZrx (x=34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass, Acta Mater 52(9), 2621 (2004); https://doi.org/10.1016/j.actamat.2004.02.009.

D. Wang, Y. Li, B. B. Sun, M. L. Sui, K. Lu, Bulk metallic glass formation in the binary Cu–Zr system, Appl Phys Lett 84, 4029 (2004); https://doi.org/10.1063/1.1751219.

Y. Li, Q. Guo, J. A. Kalb, C. V. Thompson, Matching Glass-Forming Ability with the Density of the Amorphous Phase, Science 322, 1816 (2008); 10.1126/science.1163062

Inoue, W. Zhang, Thermal Stability and Mechanical Properties of Cu-Zr and Cu-Hf Binary Glassy Alloy Rods, Mater Trans Jpn Inst Metals 45, 584 (2004); https://doi.org/10.2320/matertrans.45.584.

M. B. Tang, D. Q. Zhao, M. X. Pan, W. H. Wang, Binary Cu–Zr Bulk Metallic Glasses, Chin Phys Lett 21, 901 (2004); https://doi.org/10.1088/0256-307X/21/5/039.

G. Duan, D. Xu, Q. Zhang, G. Zhang, T. Cagin, W. L. Johnson, et al., Molecular dynamics study of the binary Cu46Zr54 metallic glass motivated by experiments: Glass formation and atomic-level structure, Phys Rev B. 71, 224208 (2005); https://doi.org/10.1103/PhysRevB.71.224208.

I. Kaban, P. Jóvári, V. Kokotin et al., Local atomic arrangements and their topology in Ni–Zr and Cu–Zr glassy and crystalline alloys, Acta Materialia 61, 2509 (2013); http://dx.doi.org/10.1016/j.actamat.2013.01.027.

J. Galvan-Colin, A. A. Valladares, R. M. Valladares, A. Valladares, Short-range order in ab initio computer generated amorphous and liquid Cu–Zr alloys: A new approach, Physica B 475, 140 (2015); http://dx.doi.org/10.1016/j.physb.2015.07.027.

L. Ward, D. Miracle, W. Windl, O. N. Senkov and K. Flores, Structural evolution and kinetics in Cu-Zr metallic liquids from molecular dynamics simulations, Phys. Rev. B. 88, 134205 (2013); https://doi.org/10.1103/PhysRevB.88.134205.

A. Mizuno, T. Kaneko, S. Matsumura, M. Watanabe, S. Kohara, M. Takata, Structure of Zr-Cu and Zr-Ni liquid alloys studied by high-energy x-ray diffraction, Materials Science Forum, 561-565, 1349 (2007); https://doi.org/10.4028/www.scientific.net/MSF.561-565.1349.

Q. K. Jiang, X. D. Wang, X. P. Nieetal, Zr–(Cu,Ag)–Al bulk metallic glasses, Acta Materialia 56, 1785 (2008); https://doi.org/10.1016/j.actamat.2007.12.030.

Y. Yokoyama, T. Yamasaki, P. K. Liaw, R. A. Buchanan, A. Inoue, Glass-structure changes in tilt-cast Zr–Cu–Al glassy alloys, Materials Science and Engineering A, 449–451, 621 (2007); 10.1016/j.msea.2006.02.422.

L. Q. Xing, P. Ochin, J. Bigot, Effects of Al on the glass-forming ability of Zr-Cu based alloys, Journal of Non-Crystalline Solids, 205-207(2), 637 (1996); https://doi.org/10.1016/S0022-3093(96)00382-1.

J. Antonowicz, D. V. Louzguine-Luzgin, A. R. Yavari, K. Georgarakis, M. Stoica, Atomic structure of Zr–Cu–Al and Zr–Ni–Al amorphous alloys, Journal of Alloys and Compounds, 471, 70 (2009); 10.1016/j.jallcom.2008.03.092.

L. Yang, C. Huang, G. Guo, Investigation on the atomic structural evolution of as-prepared and annealed ZrCuAl metallic glasses, J. Mater. Res. 27(8), 1164 (2012); https://doi.org/10.1557/jmr.2012.14.

K. Georgarakis, A. R. Yavari, D. V. Louzguine-Luzgin, J. Antonowicz, Atomic structure of Zr–Cu glassy alloys and detection of deviations from ideal solution behavior with Al addition by x-ray diffraction using synchrotron light in transmission, Applied physics letters 94, 191912 (2009); http://dx.doi.org/10.1063/1.3136428.

J. Antonowicz, A. Pietnoczka, W. Zalewski, R. Bacewicz, M. Stoica, K. Georgarakis, A.R. Yavari, Local atomic structure of Zr–Cu and Zr–Cu–Al amorphous alloys investigated by EXAFS method, Journal of Alloys and Compounds 509(1), 34 (2011); https://doi.org/10.1016/j.jallcom.2010.10.105.

Y. Q. Cheng, E. Ma, H.W. Sheng, Atomic Level Structure in Multicomponent Bulk Metallic Glass, Phys. Rev. Lett. 102, 245501 (2009); https://doi.org/10.1103/PhysRevLett.102.245501.

C. C. Wang, C. H. Wong, Interpenetrating networks in Zr-Cu-Al and Zr-Cu metallic glasses, Intermetallics 22, 13 (2012); https://doi.org/10.1016/j.intermet.2011.10.022.

L. Ren, T. Gao, R. Ma, Q. Xieand, X. Hu, The icosahedral short-range order and its local structures in Cu50Zr40Al10 alloy, Mater. Res. Express 6 , 016510 (2019); https://doi.org/10.1088/2053-1591/aae2ca.

Web-source: https://www.lammps.org/.

B. Jelinek, S. Groh, M. F. Horstemeyer, J. Houze, S. G. Kim, Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys, Physical Review B 85(24), 245102 (2012); 10.1103/physrevb.85.245102.

A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, Modelling and Simulation in Materials Science and Engineering 18(1), 015012 (2010); https://doi.org/10.1088/0965-0393/18/1/015012.

F. R. Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, A. K.Niessen, Cohesion in Metals North-Holland, (Amsterdam, 1988).

I. Kaban, P. Jóvári, B. Escher, D. T. Tran, G. Svensson, Atomic structure and formation of CuZrAl bulk metallic glasses and composites, Materialia 100, 369 (2015); http://dx.doi.org/10.1016/j.actamat.2015.08.060.

V. M. Goldschmidt, Crystal structure and chemical constitution, Transactions of the Faraday Society 25, 253 (1929); https://doi.org/10.1039/TF9292500253.

Published

2022-06-30

How to Cite

Shtablavyi, I., Popilovskyi, N., Mudry, S., & Poplavskyi, O. (2022). The structure of the Zr-Cu-Al melts in the glass forming range of concentrations. Physics and Chemistry of Solid State, 23(2), 416–423. https://doi.org/10.15330/pcss.23.2.416-423

Issue

Section

Scientific articles (Physics)