Synthesis, magnetic, AC conductivity and dielectric properties of hematite nanocrystallites
DOI:
https://doi.org/10.15330/pcss.24.2.244-248Keywords:
hematite nanoparticles, Cole-Cole plot, Dielectric properties, AC conductivity, ImpedanceAbstract
We are reporting the synthesis along with magnetic, ac conductivity and dielectric properties of hematite nanocrystallites. The prepared Fe2O3 is crystallizing in corundum structure which belongs to the rhombohedron system with the space group R3-c. The magnetization data shows a typical Morin transition, TN = 265 K for 110 nm crystallites, whereas this transition is decreasing with decrease in crystallite size, TN = 252 K for 33 nm. The value of magnetization is increased with increasing crystallite size. The enhanced dielectric permittivity and ac conductivity were observed in higher hematite crystallite size. The overall dielectric response has revealed conduction mechanism is due to the extrinsic contribution from the dominant Maxwell-Wagner polarization.
References
O.V. Salata, Applications of nanoparticles in biology and medicine, J. Nanobiotechnology, 2(1), 3 (2004); https://doi.org/10.1186/1477-3155-2-3.
D.L. Huber, Synthesis, properties, and applications of iron nanoparticles, Small., 1(5), 482 (2005); https://doi.org/10.1002/smll.200500006.
R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. 2nd ed. John Wiley & Sons; (2006).
S. Laurent, D. Forge, M. Port, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem Rev., 108(6), 2064 (2008); https://doi.org/10.1021/cr068445e.
A.S. Teja,P-Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Prog Crystal Growth Char Mat., 55(1), 22(2009); http://dx.doi.org/10.1016/j.pcrysgrow.2008.08.003.
M. De Cuyper, M. Joniau, Magnetoliposomes, Eur Biophys J., 15(5), 311 (1988);https://doi.org/10.1007/BF00256482.
S. Hasany, I. Ahmed, J. Rajan, A. Rehman, Systematic review of the preparation techniques of iron oxide magnetic nanoparticles, Nanosci Nanotechnol, 2(6):148 (2012); https://doi.org/10.5923/j.nn.20120206.01.
C-T. Wang, S-H. Ro, Nanocluster iron oxide-silica aerogel catalysts for methanol partial oxidation, Appl Catal A Gen., 285(1), 196 (2005); https://doi.org/10.1016/j.apcata.2005.02.029.
A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26(18), 3995(2005); https://doi.org/10.1016/j.biomaterials.2004.10.012.
Attarad Ali, Hira Zafar, Muhammad Zia, Ihsan ul Haq, Abdul Rehman Phull, Joham Sarfraz Ali, Altaf Hussain, Synthesis, characterization, applications, and challenges of iron oxide nanoparticles, Nanotechnol Sci Appl. 9, 49 (2016); https://doi.org/10.2147/NSA.S99986.
R.M. Cornell, U. Schwertmann, Iron Oxides in the Laboratory: Preparation and Characterization, 2nd ed.; Wiley-VCH: New York, NY, USA, 2000.
J. G. Kim, K. H. Han, C. H. Lee and J. Y. Jeong, Crystallographic and Magnetic Properties of Nanostructured Hematite Synthesized by the Sol-Gel Process. J. Korean Phys. Soc., 38, 798 (2001);
F. Bødker, M. F. Hansen, C. B. Koch, K. Lefmann and S. Mørup, Magnetic properties of hematite nanoparticles, Phys. Rev. B: Condens. Mater. Phys. 61, 6826 (2000); https://doi.org/10.1103/PhysRevB.61.6826.
P. Lunkenheimer, V. Bobnar, A. V. Pronin, A. I. Ritus, A. A. Volkov, and A. Loidl, Origin of apparent colossal dielectric constants, Phys. Rev. B, 66, 052105 (2002); https://doi.org/10.1103/PhysRevB.66.052105.
A. K. Jonscher, Universal Relaxation Law, (Chelsea Dielectrics Press, London, 1996).