An optical absorption of the composite with the nanoparticles, which are covered by the surfactant layer

Authors

  • N.A. Smirnova National University Zaporizhzhia Polytechnic, Zaporizhzhia, Ukraine
  • M.S. Maniuk National University Zaporizhzhia Polytechnic, Zaporizhzhia, Ukraine
  • A.V. Korotun National University Zaporizhzhia Polytechnic, Zaporizhzhia, Ukraine; G.V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine, Kyiv, Ukraine
  • I.M. Titov UAD Systems, Zaporizhzhia, Ukraine

DOI:

https://doi.org/10.15330/pcss.24.1.181-189

Keywords:

dielectric tensor;, absorption coefficient;, adsorbate;, surface plasmonic resonance, nanocomposite, size dependence, effective relaxation rate

Abstract

The optical properties of the nanocomposite with two-layer spherical inclusions “metallic core – surfactant layer” have been studied in the work. The question connected with an influence of the processes at the interface “metal – adsorbate” on the excitation of the surface plasmonic resonances in the nanoparticle has been studied. The fact of splitting of the surface plasmonic resonance due to the influence of the absorption bond near the surface of the metallic nanoparticles and due to the emergence of the additional energy states has been established. The relations for the effective parameters which describe the losses of coherence under the scattering at the chemical interface have been obtained. The calculations for the frequency dependencies of the diagonal components of the dielectric permittivity tensor of the two-layer nanoparticle and for the absorption coefficient of the nanocomposite have been performed. It has been shown that the frequency dependencies for the real and imaginary parts of the longitudinal component of the dielectric tensor are close to the similar dependencies for the real and imaginary parts of the dielectric function for the spherical metallic nanoparticle. At the same time the real and imaginary parts of the transverse component weakly depend on the frequency in the visible spectrum and oscillate in the infrared range. It has been established that the absorption coefficient of the composite can have one or two maximums depending on the sizes and the material of the particles-inclusions.

References

P. Yang, J. Zheng, X. Yong, Q. Zhang, L. Jiang, Colloidal synthesis and applications of plasmonic metal nanoparticles, Adv. Mater., 28, 10508 (2016); https://doi.org/10.1002/adma.201601739.

M.C. Mathpal, P. Kumar, A.K. Tripathi, R. Balasubramaniyan, M.K. Singh, J.S. Chung, A. Agarwal, Facile deposition and plasmonic resonance of Ag-Au nanoparticles in titania thin film, New J. Chem., 39, (2015); https://doi.org/10.1039/C5NJ00710K.

J. Wang, G. Jia, B. Zhang, H. Liu, C. Liu, Formation and optical absorption property of nanometer metallic colloids in Zn and Ag dually implanted silica: Synthesis of the modified Ag nanoparticles, J. Appl. Phys., 113, 034304 (2013); https://doi.org/10.1063/1.4775820.

G. Jia, H. Liu, M. Xiaoyu, H. Dai, C. Liu Xe ion irradiationinduced polycrystallization of Ag nanoparticles embedded in SiO2 and related optical absorption property, Opt. Mater. Express, 4(7), 1303 (2014); https://doi.org/10.1364/OME.4.001303.

C.P. Byers, H. Zhang, D.F. Swearer, M. Yorulmaz, B.S. Hoener, D. Huang, A. Hoggard, W.S. Chang, P. Mulvaney, E. Ringe, From tunable core-shell nanoparticles to plasmonic drawbridges: Active control of nanoparticle optical properties, Sci. Adv., 1(11), 1500988 (2015); https://doi.org/10.1126/sciadv.1500988.

J. Jana, M. Ganguly, T. Pal, Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application, RSC Adv., 6(89), 86174 (2016); https://doi.org/10.1039/C6RA14173K.

S. Raza, S.I. Bozhevolnyi, M. Wubs, N.A., Nonlocal optical response in metallic nanostructures, J. Phys.: Condens. Matter., 27, 183204 (2015); https://doi.org/10.1088/0953-8984/27/18/183204.

N. A. Mortensen, S. Raza, M.Wubs, T. Sndergaard, and S. I. Bozhevolnyi, A generalized non-local optical response theory for plasmonic nanostructures, Nat. Commun., 5, 3809 (2014); https://doi.org/10.1038/ncomms4809

J. Olson, S. Dominguez-Medina, A. Hoggard, L.-Y. Wang, W.-S. Chang, S. Link, Optical Characterization of Single Plasmonic Nanoparticles, Chem. Soc. Rev., 44, 40 (2015); https://doi.org/10.1039/C4CS00131A.

M. Liu, M. Pelton, P. Guyot-Sionnest, Reduced Damping of Surface Plasmons at Low Temperatures, Phys. Rev. B, 79, 1 (2009); https://doi.org/10.1103/PhysRevB.79.035418.

N.I. Grigorchuk, P.M. Tomchuk, Optical and transport properties of spheroidal metal nanoparticles with account for the surface effect, Phys. Rev. B, 84(8), 085448 (2011); https://doi.org/10.1103/PhysRevB.84.085448.

N.I. Grigorchuk, Plasmon resonant light scattering on spheroidal metallic nanoparticle embedded in a dielectric matrix, EPL, 97(4), 45001 (2012); https://doi.org/10.1209/0295-5075/97/45001

V.M. Lenart, R.F.Turchiello, G.F. Goya, S.L. Gómez, Enhanced Thermal Lens Effect in Gold Nanoparticle-Doped Lyotropic Liquid Crystal by Nanoparticle Clustering Probed by Z-Scan Technique, Braz. J. Phys., 45(2), 213(2015); https://doi.org/10.1007/s13538-015-0301-7.

C. Minnai, P. Milani, Metal-polymer nanocomposite with stable plasmonic tuning under cyclic strain conditions, Appl. Phys. Let., 107(7), 073106. (2015); https://doi.org/10.1063/1.4928725

A. Monti, A. Alù, A.Toscano, F. Bilotti, Optical invisibility through metasurfaces made of plasmonic nanoparticles, J. Appl. Phys., 117(12), 123103 (2015); https://doi.org/10.1063/1.4916257

P. Tuersun, Optimizing the figure of merit of gold nanoshell-based refractive index sensing, Optik, 127(1), 250 (2016); https://doi.org/10.1016/j.ijleo.2015.10.069

P.M. Tomchuk, M.I. Grigorchuk, Plasmon fluctuations of electrons in metallic nanoparticles of the ellipsoidal form, Metallofizika i Noveishie Tekhnologii, 29(5), 623 (2007);

B.N.J. Persson, Polarizability of small spherical metal particles: influence of the matrix environment, Surface Science, 281(1-2), 153 (1993); https://doi.org/10.1016/0039-6028(93)90865-H.

E.A. Coronado, G.C. Schatz, Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach, J. Chem. Phys., 119(7), 3926 (2003); https://doi.org/10.1063/1.1587686.

N.I. Grygorchuk, Behaviour of a line of the surface plasmon resonance in metal nanoparticles, Metallofizika i Noveishie Tekhnologii, 38(6), 717 (2016); https://doi.org/10.15407/mfint.38.06.0717.

M. Liu, M. Pelton, P. Guyot-Sionnest, Reduced damping of surface plasmons at low temperatures, Phys. Rev. B, 79(3), 035418 (2009) https://doi.org/10.1103/PhysRevB.79.035418.

S. Noël, B. Léger, A. Ponchel, K. Philippot, A. Denicourt-Nowicki, A. Roucoux, E. Monflier, Cyclodextrin-based systems for the stabilization of metallic nanoparticles and their versatile applications in catalysis, Catal Today, 235, 20 (2014) https://doi.org/10.1016/j.cattod.2014.03.030.

X.-Y. Zhu, Electron transfer at molecule-metal interfaces: a two-photon photoemission study, Annu. Rev. Phys. Chem., 53, 221 (2002); https://doi.org/10.1146/annurev.physchem.53.082801.093725.

K.A.Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annual Review of Physical Chemistry, 58, 267 (2007); https://doi.org/10.1146/annurev.physchem.58.032806.104607.

V.M. Rubish, V.K. Kyrylenko, M.O. Durkot, L.I. Makar, M.M. Pop, A.A. Tarnaj, M.L. Trunov, S. Mudry, I. Shtablavyi, Rapid formation methods of arrays of randomly distributed Au and Ag nanoparticles, their morphologies and optical characteristics, Physics and Chemistry of Solid State, 22(4), 804 (2021); https://doi.org/10.15330/pcss.22.4.804-810.

D. Li, Y. Xia, Welding and patterning in a flash, Nature materials, 3(11), 753 (2004); https://doi.org/10.1038/nmat1245.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, Plasmonic nanolithography, Nano Letters, 4 (6), 1085 (2004); https://doi.org/10.1021/nl049573q.

S. Lal, S. Link, N.J. Halas, Nano-optics from sensing to waveguiding, Nature Photonics, 1(11), 641 (2007); https://doi.org/10.1038/nphoton.2007.223.

A.V. Korotun, A.A. Koval’ , V.I. Reva, Absorption of Electromagnetic Radiation by Oxide-Coated Spherical Metal Nanoparticles, J. Appl. Spectr., 86(4), 606 (2019); https://doi.org/10.1007/s10812-019-00866-6.

A.V. Korotun, A.A.Koval’, V.I. Reva, I.N. Titov, Optical Absorption of a Composite Based on Bimetallic Nanoparticles. Classical Approach, Physics of Metals and Metallography, 120(11), 1040 (2019); https://doi.org/10.1134/S0031918X19090059.

A.V. Korotun, A.A. Koval’, I.N. Titov, Optical Absorption of a Composite Based on Bilayer Metal–Dielectric Spherical Nanoparticles, J. Appl. Spectr., 87(2), 240 (2020); https://doi.org/10.1007/s10812-020-00991-7.

P.M. Tomchuk, V.N.Starkov, Influence of shape spread in an ensemble of metal Nanoparticles on their optical properties, Ukrainian Journal of Physics, 63(3), 204 (2018); https://doi.org/10.15407/ujpe63.3.204.

A.V. Korotun, A.O. Koval, V.V. Pogosov, Optical parameters of bimetallic nanospheres, Ukr. J. Phys., 66(6), 518 (2021); https://doi.org/10.15407/ujpe66.6.518.

A. Pinchuk, U. Kreibig, Interface decay channel of particle surface plasmon resonance, New J. Phys., 5, 151 (2003); https://doi.org/10.1088/1367-2630/5/1/151.

A. Pinchuk, G. von Plessen, U. Kreibig, Influence of interband electronic transitions on the optical absorption in metallic nanoparticles, J. Phys. D: Appl. Phys., 37, 3133 (2004); https://doi.org/10.1088/0022-3727/37/22/012.

A.V. Korotun, N.I. Pavlyshche, Cross Sections for Absorption and Scattering of Electromagnetic Radiation by Ensembles of Metal Nanoparticles of Different Shapes, Physics of Metals and Metallography, 122(10), 941 (2021); https://doi.org/10.1134/S0031918X21100057.

A.V. Korotun, A.A. Koval’, Optical Properties of Spherical Metal Nanoparticles Coated with an Oxide Layer, Optics and Spectroscopy, 127(6), 1161 (2019); https://doi.org/10.1134/S0030400X19120117.

S. Peng, J.M. McMahon, G.C. Schatz, S.K. Gray, Y.Sun, Reversing the size-dependence of surface plasmon resonances, Proc. Natl. Acad. Sci. USA, 107(33), 14530 (2010); https://doi.org/10.1073/pnas.1007524107.

Published

2023-03-21

How to Cite

Smirnova, N., Maniuk, M., Korotun, A., & Titov, I. (2023). An optical absorption of the composite with the nanoparticles, which are covered by the surfactant layer. Physics and Chemistry of Solid State, 24(1), 181–189. https://doi.org/10.15330/pcss.24.1.181-189

Issue

Section

Scientific articles (Physics)