Auxetic properties of some intermetallic compounds

Authors

  • M. Raransky Yuri Fedjkovych Chernivtsy National University, Chernivtsy, Ukraine
  • A. Oliinych-Lysiuk Yuri Fedjkovych Chernivtsy National University, Chernivtsy, Ukraine
  • R. Tashchuk Yuri Fedjkovych Chernivtsy National University, Chernivtsy, Ukraine
  • A. Tashchuk Yuri Fedjkovych Chernivtsy National University, Chernivtsy, Ukraine
  • A. Struk Yuri Fedjkovych Chernivtsy National University, Chernivtsy, Ukraine
  • M. Unguryan Yuri Fedjkovych Chernivtsy National University, Chernivtsy, Ukraine

DOI:

https://doi.org/10.15330/pcss.23.4.764-775

Keywords:

auxetic, Young's moduls, Poisson’s ratios, anomalous deformations, anisotropy, elastic properties

Abstract

With the application of a linear theory of elasticity of anisotropic crystals and the use of experimental values of elastic moduli Сij and compliances Sij given in the Landolt-Börstein tables, characteristic surfaces of Young's moduli, angular distributions of Poisson's ratios μ(φ, Θ, ψ) and indicating auxeticity surfaces of single crystals of intermetallic compounds Ag-Au, Cu-Ni, Cu-Au, and Cu-Zn were for the first time constructed.

         The extremely high sensitivity of the component of the extreme values of Young's moduli E<110> to anomalous deformations during phase transformations of the order-disorder type was established. Anomalies of the concentration dependences of the auxetic parameters μmin(X), μmax(X) and the auxeticity degree Sa(X) near the points of phase transformation of the second order type were revealed.

References

A.E. Vol, I.K. Kagan Structure and properties of double metallic systems, Vol.3 (Nauka, Moscow, 1976). [in Russian].

Yu.M. Lakhtin, V.P. Leontieva. Materials science (Mashinovedeniie, Moscow, 1980). [in Russian].

L.N. Larikov Fazy Hume-Rothery. Hume-Rothery phases. Encyclopedic dictionary. Physics of the solid state. Vol.2. Kyiv: Naukova dumka, 559 p. [in Russian].

R.V. Goldshtein, V.A Gorodtsov, D.S. Lisovenko, Auxetic mechanics of crystalline materials, Solid State Mechanics, 4, 43 (2010); https://doi.org/10.3103/s0025654410040047.

R.V. Goldshtein, V.A. Gorodtsov, D.S. Lisovenko, Young’s modulus of cubic auxetics, Letters on Materials, 1, 127 (2011). https://doi.org/10.22226/2410-3535-2011-3-127-132.

R.V. Goldshtein, V.A. Gorodtsov, D.S. Lisovenko, Shear modulus of cubic crystals, Letters on Materials, 2, 21 (2012); https://doi.org/10.22226/2410-3535-2012-1-21-24.

V.N. Berlomestnykh., E.G. Soboleva, Coefficients of transverse deformations of cubic ionic crystals, Letters on Materials, 1, 84 (2011); https://doi.org/10.22226/2410-3535-2011-2-84-87.

Landolt–Börnstein. Numerical data and functional relationships in science and technology. Group III: Crystal and solid state physics. Second and higher order constants (Springer, Berlin, V. 29a, 682, 1992).

Yu.I. Sirotin, M.P. Shaskolskaya, Fundamentals of crystal physics (Nauka, Moscow, 1979). [in Russian].

M.D. Raranskyi, V.N. Balaziuk, M.M. Hunko, Effect of auxeticity in solids (Druk Art, Chernivtsi, 2016). [in Ukrainian].

T.B. Massalsky, Structure of solid solutions, Physical metal science. Issue 1. R.Kan (Ed.) (Mir, Moscow, 1967).

A.A. Smirnov, Generalized theory of alloy ordering (Naukova dumka, Kyiv, 1987).

G. Shultse, Metal physics. Ya.S.Umansky (Ed.) (Mir, Moscow, 1971). [in Russian].

M.D. Raranskyi, V.N. Balaziuk, M.M. Hunko, Criteria and mechanisms for the occurrence of auxeticity in cubic crystals, Metallofizika i Noveishiie Tekhnologii, 37(3), 379 (2015).

Published

2022-12-19

How to Cite

Raransky, M., Oliinych-Lysiuk, A., Tashchuk, R., Tashchuk, A., Struk, A., & Unguryan, M. (2022). Auxetic properties of some intermetallic compounds. Physics and Chemistry of Solid State, 23(4), 764–775. https://doi.org/10.15330/pcss.23.4.764-775

Issue

Section

Scientific articles (Physics)