Structural properties of Ga18Ge20.9Te61.2 alloys
DOI:
https://doi.org/10.15330/pcss.23.4.830-835Keywords:
chalcogenide glasses, X-ray diffraction, radial distribution function, Raman spectroscopy, nanophasesAbstract
In this paper, amorphous Ga18Ge20.9Te61.2 alloys have been studied using the X-ray diffraction and Raman spectroscopy methods. The experimental X-ray diffraction patterns were used for calculations of radial distribution functions that indicate positions of the nearest-neighbour bond lengths r1 = 2.67 Å and second-neighbour bond length r2 = 4.27 Å. The similar r1-values were observed for Ga-Ge-Te glasses of other compositions. The bands observed in the Raman spectra of Ga18Ge20.9Te61.2 samples show that this glass contains different nanophases, which can be explained using the terms of vibration modes inherent to Ga-Te and Ge-Te glasses, as well as films. Investigations of compositional dependences of characteristic constituent Raman bands intensities, which change with the composition should be studied in order to obtain better assignment of Raman bands.
References
K. Tanaka, Light-induced anisotropy in amorphous chalcogenide, Science 277, 1786 (1997); https://doi.org/10.1126/science.277.5333.1786.
A. Stronski, Production of metallic patterns with the help of high-resolution inorganic resists In : «Microelectronic Interconnections and Assembly», NATO ASI Series, 3:High Technology, 54, G.Harman@P.Mach, (Eds), Kluwer academic publishers, Netherlands, 263 (1998).
I.D. Aggarwal, J.S. Sanghera, Development and applications of chalcogenide glass optical fibers at NRL, JOAM, 4 (3), 665 (2002); https://doi.org/10.1080/01468030050058811.
A.V. Stronski, M. Vlček, Photosensitive properties of chalcogenide vitreous semiconductors in diffractive and holographic technologies applications, JOAM, 4 (3), 699 (2002).
D. Lezal, Chalcogenide glasses—survey and progress, J. Optoelectron. Adv. Mater., 5(1), 23 (2003); https://doi.org/10.1016/S0022-3093(03)00417-4 7.
S. Kokenyesi, Amorphous chalcogenidenano-multilayers: research and development, JOAM, 8(6), 2093 (2006).
S. Albert, E.Barthelemy, C.Vigreuxa, A.Pradel, M.Barillot, Fabrication of far infrared rib waveguides based on Te-Ge-Ga films deposited by co-thermal evaporation, Advances in Optical Thin Films III, edited by Norbert Kaiser, Michel Lequime, H. Angus Macleod Proc. of SPIE 7101 (71011), 1 (2008); https://doi.org/10.1117/12.797643.
E. Barthélémy, C. Vigreux, G. Parent, M. Barillot, and A. Pradel, Telluride films and waveguides for IR integrated optics, Phys. Status Solidi C, 1 (2011); https://doi.org/10.1002/pssc.201084126.
C.Vigreux, E.Barthélémy, L.Bastard, J.-E.Broquin, S.Ménard, M.Barillot, G.Parent, and A.Pradel Fabrication and testing of all-telluride rib waveguides for nulling interferometry, Optical Materials Express, 1(3), 357 (2011); https://doi.org/10.1364/OME.1.000357.
Huijuan Xu, Yuju He, Xunsi Wang, QiuhuaNie, Peiquan Zhang, TiefengXu, Shixun Dai, Xianghua Zhang, Guangming Tao, Preparation of Low-loss Ge15Ga10Te75chalcogenideglass for far-IR optics applications, Inf. Phys.Techn., 65 (4-5), 77 (2014); https://doi.org/10.1016/j.infrared.2014.03.008.
A. Stronski, E. Achimova, O. Paiuk, A. Meshalkin, V. Abashkin, O. Lytvyn, S. Sergeev, A. Prisacar, P. Oleksenko, G. Triduh, Optical and electron-beam recording of surface relief's using Ge5As37S58-Se nanomultilayers as registering media, J. Nano. Res., 39, 96 (2016); http://dx.doi.org/10.4028/www.scientific.net/JNanoR.39.96.
Weike Wang, Liang Li, Zhitao Zhang, Jiyong Yang, Dongsheng Tang, and Tianyou Zhai, Ultrathin GaGeTe p-type transistors, Appl. Phys. Lett.111, 203504 (2017); https://doi.org/10.1063/1.4998350.
A. Stronski, E. Achimova, O. Paiuk, A. Meshalkin, A. Prisacar, G. Triduh, P. Oleksenko, P. Lytvyn, Direct Magnetic Relief Recording Using As40S60:Mn–Se Nanocomposite Multilayer Structures, Nanoscale Research Letters, 12 (1), 286 (2017); https://doi.org/10.1186/s11671-017-2060-6.
A. Stronski, L. Revutska, A. Meshalkin, O. Paiuk, E. Achimova, A. Korchovyi, K. Shportko, O. Gudymenko, A. Prisacar,. A. Gubanova, G. Triduh, Structural properties of Ag–As–S chalcogenide glasses in phase separation region and their application in holographic grating recording, Optical Materials, 94, 393 (2019); https://doi.org/10.1016/j.optmat.2019.06.016.
M. Bokova, A. Tverjanovich, C. J. Benmore, D.Fontanari, A. Sokolov, M.Khomenko, M.Kassem, I.Ozheredov, and E.Bychkov, Unraveling the Atomic Structure of Bulk Binary Ga−Te Glasses with Surprising Nanotectonic Features for Phase-Change Memory Applications ACS, Appl. Mater. Interfaces, 13, 37363 (2021); https://doi.org/10.1021/acsami.1c09070.
M. Wuttig, Phase change materials: towards a universal memory? Nat. Mater., 4, 265 (2008).
K. C. Mandal, R. M. Krishna, T. C. Hayes, P. G. Muzykov, S. Das, T. S. Sudarshan and S. Ma, Layered GaTe crystals for radiation detectors, IEEE Trans. Nucl. Sci., 58, 1981 (2011); https://doi.org/10.1109/TNS.2011.2140330.
V.I. Min'ko, I.Z. Indutnyy, P.E. Shepeliavyi, P.M. Litvin, Application of amorphous chalcogenide films for recording of high-frequency phase-relief diffraction gratings, Journal of Optoelectronics and Advanced Materials, 7 (3), 1429 (2005).
A.V. Stronski, M. Vlček, Imaging properties of As40S40Se20 layers, Opto-Electronics Review, 8(3), 263 (2000).
Y. Sripathi, G B. Reddy, L.K. Malhotr, Structural and optical properties of GaGeTe thin films, Journal of Materials Science: Materials in Electronics, 2, 109 (1991); https://doi.org/10.1007/bf00694761.
M. Julien-Pouzol, S. Jaulmes, M. Guittard, F. Alapini, Monotellurure de Gallium, GaTe. Acta Crystallogr., B, 35, 2848 (1979); https://doi.org/10.1107/S0567740879010803.
T.E. Faber & J. M. Ziman, A theory of the electrical properties of liquid metals, Philosophical Magazine, 11(109), 153 (1965); https://doi.org/10.1080/14786436508211931.
N. E. Cusack, & D. L. Stein,. The Physics of Structurally Disordered Matter: An Introduction, Physics Today, 41(12), 110 (1988), IOP Publishing Ltd., Bristol, England, 1987; https://doi.org/10.1063/1.2811678.
A. Szczygielska, A. Burian, J.C. Dore, , V. Honkimki & S. Duber,. Local structure of saccharose- and anthracene-based carbons studied by wide-angle high-energy X-ray scattering, Journal of Alloys and Compounds, 362(1-2), 307 ((2004); https://doi.org/10.1016/s0925-8388(03)00604-2.
T. Proffen, S. J. L. Billinge, T. Egami, and D. Louca, “Structural analysis of complex materials using the atomic pair distribution function – a practical guid”, Z. Krist., 218, 132 (2003).
J.C. Phillips, Topology of Covalent Non-Crystalline Solids I:Short-Range Order in Chalcogenide Alloys, J. Non-Cryst. Solids, 34, 153 (1979); https://doi.org/10.1524/zkri.218.2.132.20664.
N. Ramesh Rao, P.S.R. Krishna, S. Basu, B.A. Dasannacharya, K.S. Sangunni, E.S.R. Gopal, Structural correlations in GexSe1-x glasses - a neutron diffraction study, Journal of Non-Crystalline Solids, 240, 221 (1998); https://rad-gtk.software.informer.com/amp/.
Y. Maeda and M.Wakagi, Ge K-edge extended X-ray absorption fine structure study of the local structure of amorphous GeTe and the crystallization, Japan. J. Appl. Phys. 30 101 (1991); https://doi.org/10.1143/JJAP.30.101.
Li Jingyu, Peng-FeiLiu, Chi Zhang, Xiaobo Sh, Shujuan Jiang, Weizhen Chen, Huabing Yin, Bao-Tian Wang, Lattice vibrational modes and phonon thermal conductivity of single-layer GaGeTe, Materials Science Journal of Materiomics, 6 (4), 723 (2020); https://doi.org/10.1016/j.jmat.2020.04.005.
M. Julien-Pouzol, S. Jaulmes, M. Guittard, F. Alapini, Monotellurure de Gallium, GaTe. Acta Crystallogr. B, 35, 2848 (1979); https://doi.org/10.1107/S0567740879010803.
Z. Chaker, G. Ori, M. Boero, C. Massobrio, E. Furet, et al.. First-principles study of the atomic structure of glassy Ga10Ge15Te75, Journal of Non-Crystalline Solids, Elsevier, 498, 338 (2015); https://doi.org/10.1016/j.jnoncrysol.2018.03.039.
Ananth Kumar, Hussein A Mousa, P ChithraLekha, Saleh T Mahmoud and N Qamhieh, Scrutiny of structural disorder using Raman spectra and Tauc parameter in GeTe2 thin films, Journal of Physics: Conf. Series 869, 012018 (2017); https://doi.org/10.1088/1742-6596/869/1/012018.
Chee Ying Khoo, Hai Liu, Wardhana A. Sasangka, Riko I. Made, Nobu Tamura, Martin Kunz, Arief S. Budiman, Chee Lip Gan, Carl V. Thompson, Impact of deposition conditions on the crystallization kineticsof amorphous GeTe films, J Mater Sci, 51, 1864 (2016); https://doi.org/10.1007/s10853-015-9493-z.
KS Andrikopoulos, SN Yannopoulos, GA Voyiatzis, AVKolobov, M Ribes, J Tominaga. Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous to crystal transition, J Phys 18 (3), 965 (2006); https://doi.org/10.1088/0953-8984/18/3/014.
KS Andrikopoulos, SN Yannopoulos, AV Kolobov, P Fons, J Tominaga, Raman scattering study of GeTe and Ge2-Sb2Te5 phase-change materials, J Phys.Chem Solids, 68(5–6), 1074 (2007); https://doi.org/10.1016/j.jpcs.2007.02.027.
R Mazzarello, S Caravati, S Angioletti-Uberti, M Bernasconi, M Parrinello, Signature of tetrahedral Ge in the Raman spectrum of amorphous phase-change materials, Phys Rev Lett., 104(8), 085503 (2010); https://doi.org/10.1103/PhysRevLett.104.085503.
C. Vigreux, M.V. Thi, R. Escalier, G. Maulion, R. Kribich, A. Pradel, Channel waveguides based on thermally co-evaporated Te–Ge–Se films for infrared integrated optics, J. Non-Cryst. Solids, 377(10), 205 (2013); https://doi.org/10.1016/j.jnoncrysol.2012.11.037.
S.N. Yannopoulos, G.A. Voyiatzis, A.V. Kolobov, M. Ribes, Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous to crystal transition, J. Phys.:Condens. Mater., 18(3), 965 (2006); https://doi.org/10.1088/0953-8984/18/3/014.
F. J. Manjón, S. Gallego-Parra, P. Rodríguez-Hernández, A.lfonso Muñoz, C. Drasar, V. Muñoz-Sanjosé and O. Oeckler, Anomalous Raman Modes in Tellurides, J. Mater. Chem. C, 9, 6277 (2021); https://doi.org/10.1039/D1TC00980J.
B.H.Torrie, Raman spectrum of tellurium, Solid State Communications 8, Issue 22, 15 November, 1899 (1970), https://doi.org/10.1016/0038-1098(70)90343-1.
Ning Dong, Yimin Chen, Ningning Wei, Guoxiang Wang, Rongping Wang, Xiang Shen, Shixun Dai, Qiuhua Nie, Optical and structural properties of Ge-Ga-Te amorphous thin films fabricated by magnetron sputtering, Infrared Physics & Technology, 86, 181 (2017); https://doi.org/10.1016/j.infrared.2017.09.008.
I. Voleská, J. Akola, P. Jóvári, J. Gutwirth, T. Wágner, T. Vasileiadis, S.Yannopoulos, R. Jones, Structure, electronic, and vibrational properties of glassy Ga11Ge11Te78: experimentally constrained density functional study, Phys. Rev. B, 86 (9), 094108 (2012).
S. Sen, E.L. Gjersing, B.G. Aitken, Physical properties of GexAs2xTe100–3x glasses and Raman spectroscopic analysis of their short-range structure, J. Non-Cryst. Solids, 356(41–42), 2083 (2010); https://doi.org/10.1016/j.jnoncrysol.2010.08.013.
P. Neˇmec, V. Nazabal, M. Dussauze, H.L. Ma, Y. Bouyrie, X.H. Zhang, Ga–Ge–Te amorphous thin films fabricated by pulsed laser deposition, Thin Solid Films, 531(1), 454 (2013); https://doi.org/10.1016/j.tsf.2013.01.096.
J. Sun, Q. Nie, X. Wang, S. Dai, X. Zhang, B. Bureau, C. Boussard, C. Conseil, H.Ma, Structural investigation of Te-based chalcogenide glasses using Raman spectroscopy, Inf. Phys. Technol., 55(4), 316 (2012); https://doi.org/10.1016/j.infrared.2012.03.003.
AS Pine, G Dresselhaus, Raman spectra and lattice dynamics of tellurium, Phys Rev B, 4(2), 356 (1971); https://doi.org/10.1103/PhysRevB.4.356.