About synthesis mechanism of periodic oxide nanocrystallites on surface of single-crystal InP
DOI:
https://doi.org/10.15330/pcss.24.1.159-165Keywords:
indium phosphide, nanocrystallites, periodic structures, nanowiresAbstract
We have obtained unique periodic oxide nanocrystallites on the surface of indium phosphide. The morphological characteristics of the structures obtained and their component composition are investigated in the article. The main attention is focused on explaining the mechanism of the periodic structures, which are packed by the ‘parquet floor’ type. The mechanism based on sliding the sources of rectangular-shaped dislocation loops has been proposed. The system of the main and secondary (ingoing) dislocations that cause the formation of the steps has been considered. The mathematical interpretation of the described model has also been proposed.
References
E. Monaico, I. Tiginyanu, V. Ursaki, Porous semiconductor compounds, Semiconductor Science and Technology, 35(10), 103001 (2020); https://doi.org/10.1088/1361-6641/ab9477.
Z. T. Karipbayev et al., Optical, Structural, and Mechanical Properties of Gd3Ga5O12 Single Crystals Irradiated with 84 Kr+ Ions, Physica Status Solidi (b), 2100415 (2022); https://doi.org/10.1002/pssb.202100415.
Y. He, M. Tsutsui, Y. Zhou, X. S. Miao, Solid-state nanopore systems: from materials to applications, NPG Asia Materials, 13(1), 1-26 (2021); https://doi.org/10.1038/s41427-021-00313-z.
G.-H. Lee et al., Multifunctional materials for implantable and wearable photonic healthcare devices, Nature Reviews Materials, 5 (2), 149 (2022); https://doi.org/10.1038/s41578-019-0167-3.
Y. Liu et al., Room temperature nanocavity laser with interlayer excitons in 2D heterostructures, Science Advances, 5(4), (2019); https://doi.org/10.1126/sciadv.aav4506.
D. Stange et al., GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers, ACS Photonics, 5 (11), 4628 (2018); https://doi.org/10.1021/acsphotonics.8b01116.
Y. Suchikova, V. Kidalov, and G. Sukach, Blue Shift of Photoluminescence Spectrum of Porous InP, ECS Transactions, 25 (24), 59 (2009); https://doi.org/10.1149/1.3316113.
B. K. SaifAddin et al., Fabrication technology for high light-extraction ultraviolet thin-film flip-chip (UV TFFC) LEDs grown on SiC, Semiconductor Science and Technology, 34(3), 035007 (2019); https://doi.org/10.1088/1361-6641/aaf58f.
Y. Suchikova, Provision of environmental safety through the use of porous semiconductors for solar energy sector, Eastern-European Journal of Enterprise Technologies, 6, 5 (84) 26–33 (2016); https://doi.org/10.15587/1729-4061.2016.85848.
T. Sato, X. Zhang, K. Ito, S. Matsumoto, Y. Kumazaki, Electrochemical formation of N-type GaN and N-type InP porous structures for chemical sensor applications. In 2016 IEEE SENSORS (1-3) (2016); https://doi.org/10.1109/ICSENS.2016.7808443.
J.-J. Zhang et al., Oriented arrays of Co3O4 nanoneedles for highly efficient electrocatalytic water oxidation, Chemical Communications, 55 (27), 3971 (2019); https://doi.org/10.1039/c9cc00791a.
W. Huang, C. Gatel, Z.-A. Li, and G. Richter, Synthesis of magnetic Fe and Co nano-whiskers and platelets via physical vapor deposition, Materials & Design, 208, 109914 (2021); https://doi.org/10.1016/j.matdes.2021.109914.
M. Kwoka, E. Comini, D. Zappa, and J. Szuber, Flower-like ZnO Nanostructures Local Surface Morphology and Chemistry, Nanomaterials, 12 (15), 2666 (2022); https://doi.org/10.3390/nano12152666.
S. Yana, Porous indium phosphide: Preparation and properties. Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques, 283 (2016); https://doi.org/10.1007/978-3-319-15266-0_28.
S. Vambol, et al., Research into effect of electrochemical etching conditions on the morphology of porous gallium arsenide, Eastern-European Journal of Enterprise Technologies, 6, 5 (90), 22 (2017); https://doi.org/10.15587/1729-4061.2017.118725.
A. Gapeeva et al., Electrochemical Surface Structuring for Strong SMA Wire–Polymer Interface Adhesion, ACS Applied Materials & Interfaces, 13 (18), 21924 (2021); https://doi.org/10.1021/acsami.1c00807.
D. Wu et al., Self-organization of polymer nanoneedles into large-area ordered flowerlike arrays, Applied Physics Letters, 95 (9), 091902 (2009); https://doi.org/10.1063/1.3213394.
X. Liang, R. Dong, and J. C. Ho, Self-Assembly of Colloidal Spheres toward Fabrication of Hierarchical and Periodic Nanostructures for Technological Applications, Advanced Materials Technologies, 4 (3), 1800541 (2019); https://doi.org/10.1002/admt.201800541.
I.-T. Chen, E. Schappell, X. Zhang, and C.-H. Chang, Continuous roll-to-roll patterning of three-dimensional periodic nanostructures, Microsystems & Nanoengineering, 6 (1), (2020); https://doi.org/10.1038/s41378-020-0133-7.
Y.A. Suchikova, V.V. Kidalov, G.A. Sukach, Influence of type anion of electrolit on morphology porous inp obtained by electrochemical etching, Journal of Nano- and Electronic Physics, 1(4), 78 (2009).
S. S. Kovachov et al., Chemical evaluation of the quality of nanostructures synthesized on the surface of indium phosphide, Archives of Materials Science and Engineering, 1 (110), 18 (2021); https://doi.org/10.5604/01.3001.0015.3592.
Y. Suchikova, S. Kovachov, I. Bohdanov, Formation of oxide crystallites on the porous GaAs surface by electrochemical deposition. Nanomaterials and Nanotechnology, 12, (2022); https://doi.org/10.1177/18479804221127307.
Y. Suchikova, S. Vambol, V. Vambol, N. Mozaffari, and N. Mozaffari, Justification of the most rational method for the nanostructures synthesis on the semiconductors surface, Journal of Achievements in Materials and Manufacturing Engineering, 1-2 (92), 19 (2019); https://doi.org/10.5604/01.3001.0013.3184.
S. O. Vambol et al., Formation of Filamentary Structures of Oxide on the Surface of Monocrystalline Gallium Arsenide, Journal of Nano- and Electronic Physics, 9 (6), 06016–1 (2017) https://doi.org/10.21272/jnep.9(6).06016.
J. Zhang et al., Boosting the catalytic activity of a step-scheme In2O3/ZnIn2S4 hybrid system for the photofixation of nitrogen, Chinese Journal of Catalysis, 43 (2), 265 (2022); https://doi.org/10.1016/s1872-2067(21)63801-9.
A. Usseinov et al., Vacancy Defects in Ga2O3: First-Principles Calculations of Electronic Structure, Materials, 14 (23), 7384 (2021); https://doi.org/10.3390/ma14237384.
A. Usseinov et al., Ab-Initio Calculations of Oxygen Vacancy in Ga2O3 Crystals, Latvian Journal of Physics and Technical Sciences, 58 (2), 3 (2021); https://doi.org/10.2478/lpts-2021-0007.
V. Kumar, S. M. Majhi, K.-H. Kim, H. W. Kim, and E. E. Kwon, Advances in In2O3-based materials for the development of hydrogen sulfide sensors, Chemical Engineering Journal, 404, 126472 (2021); https://doi.org/10.1016/j.cej.2020.126472.
I.V. Rogozin, Nitrogen-doped p-type ZnO thin films and ZnO/ZnSe p-n heterojunctions grown on ZnSe substrate by radical beam gettering epitaxy, Thin Solid Films, 517(15), 4318 (2009); https://doi.org/10.1016/j.tsf.2008.12.002.
Z. Zhang, M. Wang, F. Wang, Plasma-assisted construction of CdO quantum dots/CdS semi-coherent interface for the photocatalytic bio-CO evolution, Chem Catalysis, 2, 1 (2022); https://doi.org/10.1016/j.checat.2022.04.001.
V. Serga, R. Burve, A. Krumina, M. Romanova, E. A. Kotomin, A. I. Popov, Extraction–pyrolytic method for TiO2 polymorphs production, Crystals, 11(4), 431 (2021); https://doi.org/10.3390/cryst11040431.
Y. Suchikova, A. Lazarenko, S. Kovachov, A. Usseinov, Z. Karipbaev, and A. I. Popov, Formation of porous Ga2O3/GaAs layers for electronic devices, in 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), Lviv-Slavske, Ukraine, Feb. 22–26, (2022); https://doi.org/10.1109/tcset55632.2022.9766890.
B. Khorshidi, I. Biswas, T. Ghosh, T. Thundat, and M. Sadrzadeh, Robust fabrication of thin film polyamide-TiO2 nanocomposite membranes with enhanced thermal stability and anti-biofouling propensity, Scientific Reports, 8 (1), (2018); https://doi.org/10.1038/s41598-017-18724-w.
A. Uzum, I. Kanmaz, Passivation properties of HfO2-SiO2 mixed metal oxide thin films with low reflectivity on silicon substrates for semiconductor devices, Thin Solid Films, 738, 138965 (2021); https://doi.org/10.1016/j.tsf.2021.138965.
R. J. Theeuwes et al., POx/Al2O3 stacks for surface passivation of Si and InP, Solar Energy Materials and Solar Cells, 246, 111911 (2022); https://doi.org/10.1016/j.solmat.2022.111911.
C. Wang, L. Peng, Q. Qian, J. Du, S. Wang, and Y. Huang, Tuning the Carrier Confinement in GeS/Phosphorene van der Waals Heterostructures, Small, 14 (10), 1703536 (2018); https://doi.org/10.1002/smll.201703536.
D. Coelho, J. P. R. S. Gaudêncio, S. A. Carminati, F. W. P. Ribeiro, A. F. Nogueira, and L. H. Mascaro, Bi electrodeposition on WO3 photoanode to improve the photoactivity of the WO3/BiVO4 heterostructure to water splitting, Chemical Engineering Journal, 399, 125836 (2020); https://doi.org/10.1016/j.cej.2020.125836.
L. Maduro, M. Noordam, M. Bolhuis, L. Kuipers, and S. Conesa‐Boj, Position‐Controlled Fabrication of Vertically Aligned Mo/MoS2 Core–Shell Nanopillar Arrays, Advanced Functional Materials, 32 (5), 2107880 (2021); https://doi.org/10.1002/adfm.202107880.
Y. A. Suchikova, V. V. Kidalov, and G. A. Sukach, Influence of dislocations on the process of pore formation in n-InP (111) single crystals, Semiconductors, 45(1), 121 (2011); https://doi.org/10.1134/s1063782611010192.