Electron and hole spectrum taking into account deformation and polarization in the quantum dot heterostructure InAs/GaAs

Authors

  • H.Ya. Bandura Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine
  • I.V. Bilynskyi Drohobych Ivan Franko State Pedagogical University
  • R.Ya. Leshko Drohobych Ivan Franko State Pedagogical University

DOI:

https://doi.org/10.15330/pcss.24.1.146-152

Keywords:

exchange interaction, deformation, 4-band model or multiband hole model, 6-band model, polarization charges, strained heterosystem

Abstract

In the paper InAs spherical quantum dots in a GaAs matrix were investigated. The energies of electrons and holes in single- and multi-band models (with strong, weak, and intermediate spin-orbit interaction) were calculated taking into account both the deformation of the quantum-dot matrix and the polarization charges on the quantum dot surface. The dependence of the energy levels of electrons and holes on the radius of the quantum dot is considered. It is shown that the deformation effects are stronger than polarization for the electron. For holes those effects are opposites. The energies of electrons and holes have been compared in all approximation models.

References

J.B. Xia and J.B. Li, Electronic structure of quantum spheres with wurtzite structure, Phys. Rev. B, 60, 11 540 (1999); https://doi.org/10.1103/PhysRevB.60.11540.

A. Lochmann, E. Stock, O. Schulz, F. Hopfer, D. Bimberg, V. Haisler, A. Toporov, A. Bakarov, and A. Kalagin, Electrically driven single quantum dot polarised single photon emitter, Electron. Lett. 42, 774 (2006); https://doi.org/10.1049/el:20061076.

M. Scholz et al., Non-classical light emission from a single electrically driven quantum dot, Opt. Express 15, 9107 (2007); https://doi.org/10.1364/OE.15.009107.

I. Bilynskyi, R. Leshko, & H.Bandura, Influence of quantum dot shape on energy spectra of three-dimensional quantum dots superlattices, Physics and Chemistry of Solid State, 21(4), 584 (2020); https://doi.org/10.15330/pcss.21.4.584-590.

O. O. Dan’kiv, R. M. Peleshchak, Strain-renormalized energy spectra of electrons and holes in InAs quantum dots in the InAs/GaAs heterosystem, Technical Physics Letters, 31, 691 (2005);

I. D. Rukhlenko et al., Kinetics of pulse-induced photoluminescence from a semiconductor quantum dot, Opt. Express 20, 27612 (2012); https://doi.org/10.1364/OE.20.027612.

A.S. Baimuratov, V.K. Turkov, I.D. Rukhlenko, A.V. Fedorov, Shape-induced anisotropy of intraband luminescence from a semiconductor nanocrystal, Opt. Lett. 37, 4645 (2012); https://doi.org/10.1364/OL.37.004645.

D. Press, T.D. Ladd, , D. P. Y. Yamamotol, B. Zhang, Complete quantum control of a single quantum dot spin using ultrafast optical pulses, Nature 456, 218 (2008); https://doi.org/10.1038/nature07530.

A.V. Baranov, A.V. Fedorov, I.D. Rukhlenko, Y. Masumoto, Intraband carrier relaxation in quantum dots embedded in doped heterostructures, Phys.Rev. B 68, 205318 (2003); https://doi.org/10.1103/PhysRevB.68.205318.

A.J. Shields, Semiconductor quantum light sources, Nat. Photon. 1, 215 (2007); https://doi.org/10.1038/nphoton.2007.46.

K.J. Vahala, Optical microcavities, Nature 424, 839 (2003); https://doi.org/10.1038/nature01939.

V.I. Klimov, A.A. Mikhailovsky, S. Xu, A. Malko, Optical gain and stimulated emission in nanocrystal quantum dots, Science 290, 314 (2000); https://doi.org/10.1126/science.290.5490.314.

Z.L. Yuan et al., Electrically Driven Single-Photon Source, Science 295, 102 (2002); https://doi.org/10.1126/science.1066790.

A.J. Bennett et al., Microcavity single-photon-emitting diode, Appl. Phys. Lett. 86, 181102 (2005); https://doi.org/10.1063/1.1921332.

P. Michler et al., A Quantum Dot Single-Photon Turnstile Device, Science 290, 2282 (2000); https://doi.org/10.1126/science.290.5500.2282.

K. Tanabe, K. Watanabe, Y. Arakawa, III-V/Si hybrid photonic devices by direct fusion bonding, Scientific Rep. 2, 349 (2012); https://doi.org/10.1038/srep00349.

J. Jasieniak, B.I. MacDonald, S. E. Watkins, P. Mulvaney, Solution-processed sintered nanocrystal solar cells via layer-by-layer assembly, Nano Lett. 11(7), 2856 (2011); https://doi.org/10.1021/nl201282v.

I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Air-stable all-inorganic nanocrystal solar cells processed from solution, Science 310, 462 (2005); https://doi.org/10.1126/science.1117908.

P. Prabhakaran, W.J. Kim, , K.-S. Lee, P.N. Prasad, Quantum dots (QDs) for photonic applications, Opt. Mater. Express 2, 578 (2012); https://doi.org/10.1364/Ome.2.000578

S.A. McDonald et al., Solution-processed PbS quantum dot infrared photodetectors and photovoltaics, Nat. Mater. 4, 138 (2005); https://doi.org/10.1038/nmat1299.

O.L. Lazarenkova, A.A. Balandin, Miniband formation in a quantum dot crystal, Journal of Applied Physics 89(10), 5509 (2001); https://doi.org/10.1063/1.1366662].

O.L. Lazarenkova, A.A. Balandin, Electron and phonon energy spectra in a three-dimensional regimented quantum dot superlatice, Phys. Rev. B, 66, 245319 (2002); https://doi.org/10.1103/PhysRevB.66.245319.

I. Bilynskyi, R. Leshko, H. Metsan, I. Shevchuk, Hole States in Spherical Quantum Nanoheterosystem with Intermediate Spin-Orbital Interaction, Physics and Chemistry of Solid State, 20(3), 227 (2019); https://doi.org/10.15330/pcss.20.3.227-233.

G.B. Grigoryan, E.M. Kazaryan, Al.L. Efros, T.B. Yazeva, Solid State Phys. 32(6), 1722 (1990)

J.M. Luttinger and W. Kohn, Motion of Electrons and Holes in Perturbed Periodic Fields, Phys. Rev., 97 (4), 869 (1955).

E. Menéndez-Proupin and C. Trallero-Giner, Electric-field and exciton structure in CdSe nanocrystals, Phys. Rev. B, 69, 125336 (2003); https://doi.org/10.1103/PhysRevB.69.125336.

R.Ya. Leshko, I.V. Bilynskyi, The hole energy spectrum of an open spherical quantum dot within the multiband model, Physica E, l (110), 10 (2019); https://doi.org/10.1016/j.physe.2019.01.024.

Downloads

Published

2023-03-20

How to Cite

Bandura, H., Bilynskyi , I., & Leshko , R. (2023). Electron and hole spectrum taking into account deformation and polarization in the quantum dot heterostructure InAs/GaAs. Physics and Chemistry of Solid State, 24(1), 146–152. https://doi.org/10.15330/pcss.24.1.146-152

Issue

Section

Scientific articles (Physics)

Most read articles by the same author(s)