Physical properties of nanocrystaline PbS synthesized by electrolytic method
DOI:
https://doi.org/10.15330/pcss.24.2.262-268Keywords:
lead sulfide, X-ray diffraction, nanocrystals, Debye-Scherrer formula, Williamson-Hall method, Raman scattering, phononsAbstract
The possibility of obtaining nanocrystaline lead sulfide by an electrolytic method using lead electrodes is demonstrated, and the influence of temperature on the synthesis process is investigated. Based on the results of X-ray diffraction studies, the chemical and phase composition of the obtained samples is determined, as well as the parameters of the unit cell of the crystals lattice. The size of the nanocrystallites and the magnitude of residual mechanical strain in them is determined using the methods of Debye-Scherrer and Williamson-Hall. The results of X-ray diffraction are in agreement with the results of the Raman scattering on phonons.
References
N. Choudhury and B.K. Sarma, Structural characterization of lead sulfide thin films by means of X-ray line profile analysis, Bull. Mater. Sci., 32 (1), 43 (2009); https://doi.org/10.1007/s12034-009-0007-y.
A.B. Rohom, P.U. Londhe, P.R. Jadhav, G.R. Bhand, and N.B. Chaure. Studies on chemically synthesized PbS thin films for IR detector application, J. Mater. Sci. 28, 17107 (2017); https://doi.org/10.1007/s10854-017-7637-4.
M.H. Jameel, S. Saleem, M. Hashim, [et al], A comparative study on characterizations and synthesis of pure lead sulfide (PbS) and Ag-doped PbS for photovoltaic applications, Nanotechnology Reviews, 10, 1484 (2021); https:doi.org/10.1515/ntrev-2021-0100.
Th. Bielewicz, S. Dogan, and Ch. Klinke. Tailoring the Height of Ultrathin PbS Nanosheets and Their Application as Field-Effect Transistors. Small 11(7), 826 (2015); https:doi.org/10.1002/smll.201402144.
D.J. Asunskis, I.L. Bolotin, A.T. Wroble, A.M. Zachary, L. Hanley. Lead Sulfide Nanocrystal-Polymer Composites for Optoelectronic Applications. Macromol. Symp., 268, 33 (2008); https:doi.org/10.1002/masy.200850807.
L.F. Koao, F.B. Dejene, H.C. Swart, Synthesis of PbS Nanostructures by Chemical Bath Deposition Method, Int. J. Electrochem. Sci., 9, 1747 (2014);
I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, Size-Dependent Optical Properties of Colloidal PbS Quantum Dots, ACS Nano, 3(10), 3023 (2009); https://doi.org/10.1021/nn900863a.
M. Mozafari, F. Moztarzadeh, Controllable synthesis, characterization and optical properties of colloidal PbS/gelatin core–shell nanocrystals, Journal of Colloid and Interface Science, 351, 442 (2010); https://doi.org/10.1016/j.jcis.2010.08.030.
M. Scheele, D. Hanifi, D. Zherebetskyy, S. T. Chourou, S. Axnanda, B. J. Rancatore, K. Thorkelsson, T. Xu, Z. Liu, L.-W. Wang, Y. Liu, and A. P. Alivisatos, PbS Nanoparticles Capped with Tetrathiafulvalenetetracarboxylate: Utilizing Energy Level Alignment for Efficient Carrier Transport, ACS Nano, 8(3), 2532 (2014); https://doi.org/10.1021/nn406127s.
L. Cheng, Y. Cheng, J. Xu, H. Lin, Y. Wang, Near-infrared two-photon absorption upconversion of PbS/CdS quantum dots prepared by cation exchange method, Materials Research Bulletin 140, 111298 (2021); https://doi.org/10.1016/j.materresbull.2021.111298.
A.K. Mishra, S. Saha, Synthesis and characterization of PbS nanostructures to compare with bulk, Chalcogenide Letters, 17(3), 147 (2020); https://doi.org/10.15251/CL.2020.173.147.
D.V. Talapin, J.-S. Lee, M.V. Kovalenko and E.V. Shevchenko, Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications, Chem. Rev., 110, 389 (2010); https://doi.org/10.1021/cr900137k.
S.V. Kershaw, L. Jing, X. Huang, M. Gao and A.L. Rogach, Materials aspects of semiconductor nanocrystals for optoelectronic applications, Mater. Horizons, 4, 155 (2017); https://doi.org/10.1039/C6MH00469E.
M.T. Dieng, B.D. Ngom, P.D. Tall, M. Maaza, Biosynthesis of Zn5(CO3)2(OH)6 from Arachis Hypogaea Shell (Peanut Shell) and Its Conversion to ZnO Nanoparticles, American Journal of Nanomaterials, 7(1), 1 (2019); https://doi.org/10.12691/ajn-7-1-1.
Ankita, S. Kumar, S. Saralch, D. Pathak, Nanopowder and Thin Films of ZnO by Sol Gel Approach, J. Nano - Electron. Phys., 11(4), 04027 (2019); https://doi.org/10.21272/jnep.11(4).04027.
O.Z. Didenko, P.E. Strizhak, G.R. Kosmambetova, N.S. Kalchuk, Synthesis and Morphology of the ZnO/MgO Low-Dimensional Quantum Systems, Physics and Chemistry of Solid State, 10(1), 106 (2009);
M. Basak, Md. L. Rahman, Md. F. Ahmed, B. Biswas, N. Sharmin. The use of X-ray diffraction peak profile analysis to determine the structural parameters of cobalt ferrite nanoparticles using Debye-Scherrer, Williamson-Hall, Halder-Wagner and Size-strain plot: Different precipitating agent approach,. Journal of Alloys and Compounds 895, 162694 (2022); https://doi.org/10.1016/j.jallcom.2021.162694.
A. Guinier, X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies. Dover publication incorporation, New York, 1994.
S. Rajathi, K. Kirubavathi, K. Selvaraju, Structural, morphological, optical, and photoluminescence properties of nanocrystalline PbS thin films grown by chemical bath deposition, Arabian Journal of Chemistry 10, 1167 (2017); https://doi.org/10.1016/j.arabjc.2014.11.057.
M. Wati and K. Abraha, A Study on Fabrication and Structural Characterization of PbS Thin Films, American Journal of Biochemistry and Biotechnology, 13(4), 208 (2017); https://doi.org/10.3844/ajbbsp.2017.208.214.
N.B. Danilevska , M.V. Moroz , B.D. Nechyporuk , N.E. Novoseletskiy, V.O. Yukhymchuk, The Influence of Technological Modes on the Physical Properties of Cadmium Sulfide Nanocrystals Derived by the Electrolyte Method, Journal of Nano- and Electronic Physics, 8(2), 02041 (2016); https://doi.org/10.21272/jnep.8(2).02041.
A.V. Lysytsya, M.V. Moroz, B.D. Nechyporuk, B.P. Rudyk, B.F. Shamsutdinov, Physical Properties of Zinc Compounds Obtained by Electrolytic Method, Physics and Chemistry of Solid State, 22(1), 160 (2021); https://doi.org/10.15330/pcss.22.1.160-167.
N.B. Danilevska, M. Moroz, N. Yu. Novoseletskyy, B.D. Nechyporuk, Б B.P. Rudyk, The influence of technological modes on the physical properties of zinc oxide nanocrystals derived electrolyte method, Journal of Physical Studies, 20(3), 3601-1 (2016); https://doi.org/10.30970/jps.20.3601.
V.D. Mote, Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles, Journal of theoretical and applied physics, 6(1), 2251 (2012); https://doi.org/10.1186/2251-7235-6-6.
B. Huntington. The Elastic Constants of Crystals. Solid State Physics. 7, 213-351 (1958).
T. D. Krauss, F.W. Wise, Raman-scattering study of exciton-phonon coupling in PbS nanocrystals, Phys. Rev. B, 15(55), 9860 (1997); https://doi.org/10.1103/PhysRevB.55.9860.
P. G. Etchegoin, M. Cardona, R. Lauck, R. J. H. Clark, J. Serrano, and A. H. Romero, Temperature-dependent Raman scattering of natural and isotopically substituted PbS, Phys. stat. sol. (b) 245(6), 1125 (2008); https://doi.org/10.1002/pssb.200743364.
A.G. Kontos, V. Likodimos, E. Vassalou, I. Kapogianni, Y.S. Raptis, C. Raptis, P. Falaras, Nanostructured titania films sensitized by quantum dot chalcogenides, Nanoscale Research Letters, 6(1), 266 (2011); https://doi.org/10.1186/1556-276X-6-266.
A. Milekhin, L. Sveshnikova, T. Duda, N. Surovtsev, S. Adichtchev, D. R. T. Zahn, Optical Phonons in Nanoclusters Formed by the Langmuir-Blodgett Technique, Chinese Journal of Physics, 49(1), 63 (2011);
J.S. Arunashree, N. P. Suresh, S. Sujesh, K.P. Vaishnav, Vishnu, S. Vishnu, M. Prabhakaran, V.V. Ison and C.O. Sreekala, Surface Modified Lead Sulphide Quantum Dots for In Vitro Imaging of Breast Cancer Cells Adopting Confocal Raman Spectroscopy, Int. J. Chem. Sci.: 14(4), 1844 (2016);
A. V. Baranov, K. V. Bogdanov, E. V. Ushakova, S. A. Cherevkov, A. V. Fedorov, and S. Tscharntke, Comparative Analysis of Raman Spectraof PbS Macro- and Nanocrystals, Optics and Spectroscopy, 109(2), 268 (2010); https://doi.org/10.1134/S0030400X10080199.
O. Portillo-Moreno, R. Gutierrezerez, M. Chavez Portillo, M.N. Marquez Specia, G. Hernandez-Telleza, M. Lazcano Hernandez, A. Moreno Rodrıguez, R. Palomino-Merino, E. Rubio Rosas, Growth of doped PbS:Co2+ nanocrystals by Chemical Bath, Revista, Mexicana de Fısica, 62, 456 (2016);
M. Cheraghizade, R. Yousefi, F. Jamali-Sheini, A. Saaedi, Comparative study of Raman properties of various lead sulfide morphologies, Majlesi Journal of Telecommunication Devices, 2(1), 163 (2013);
K. K. Nanda, S. N. Sahu, R. K. Soni and S. Tripathy, Raman spectroscopy of PbS nanocrystalline semiconductors, PHYSICAL REVIEW B, 58(23), 15405 (1998); https://doi.org/10.1103/PhysRevB.58.15405.
M. Cortez-valadez, A. Vargas-ortiz, L. Rojas-blanco, H. Arizpe-chávez, M. Flores-Acosta, R. Ramírez-Bon, Additional Active Raman Modes in α-PbO Nanoplates, Physica E: Low-dimensional Systems and Nanostructures, 53, 146 (2013); https://doi.org/10.1016/j.physe.2013.05.006.
J. L. Blackburn, H. Chappell, J. M. Luther, A. J. Nozik, J. C. Johnson, Correlation between Photooxidation and the Appearance of Raman Scattering Bands in Lead Chalcogenide Quantum Dots, J. Phys. Chem. Lett., 2 (6), 599 (2011); https://doi.org/10.1021/jz2000326.