Green synthesis of silver nanoparticles from whole plant extract analyzed for characterization, antioxidant, and antibacterial properties
DOI:
https://doi.org/10.15330/pcss.24.4.640-649Keywords:
Green synthesis, Plant extract, silver nanoparticles, Antibacterial activity, Antioxidant activityAbstract
In this analysis, A green synthesis method utilizing a plant extract derived from Rumex nepalensis (spreng) was employed to synthesize silver nanoparticles. The synthesized nanoparticles were thoroughly characterized for their structural, surface morphological, optical, antioxidant, and antibacterial properties. Structural analysis revealed a face-centered cubic structure, while FTIR analysis confirmed the presence of biosurfactant molecules in the leaf extract that acted as reducing agents. SEM and TEM analyses further confirmed the spherical shape of the nanoparticles, with a size range of 19-28 nm. The evaluation of the silver nanoparticles demonstrated their antioxidant and antibacterial properties. These nanoparticles exhibited activities in both antioxidant and antimicrobial realms, showcasing their potential as dual-functional agents. This study highlights the effectiveness of the green synthesis method using Rumex nepalensis (spreng) extract for the production of silver nanoparticles with desirable properties for various applications.
References
K. Ohno, T. Akashi, Y. Huang, Y. Tsuji, Surface-Initiated Living Radical Polymerization from Narrowly Size-Distributed Silica Nanoparticles of Diameters Less Than 100 nm, Macromolecules. 43, 21, 8805 (2010); https://doi.org/10.1021/ma1018389.
R. Singh, J. W.Lillard Jr, Nanoparticle-based targeted drug delivery, Exp. Mol. Pathol.86, 3, 215 (2009); https://doi.org/10.1016/j.yexmp.2008.12.004.
B. Bhushan, Introduction to Nanotechnology: History, Status, and Importance of Nanoscience and Nanotechnology Education, Glob. Perspect. Nanosci. Eng. Educ., 1 (2016); https://doi.org/10.1007/978-3-319-31833-2_1.
M. Nasrollahzadeh, S. M.Sajadi, M.Sajjadi, Z.Issaabadi, Chapter 1 - An Introduction to Nanotechnology, Interf. Sci. Technol., 28, 1 (2019); https://doi.org/10.1016/B978-0-12-813586-0.00001-8.
S. Mohan, O. S.Oluwafemi, N. Kalarikkal, S. Thomas, S. P.Songca, Biopolymers–application in nanoscience and nanotechnology, Recent advances in biopolymers., 1, 1, 47 (2016).
R. Sathiyapriya, V.Hariharan, K.Prabakaran, M.Durairaj, V.Aroulmoji, Nanotechnology in Materials and Medical Sciences, Int. J. Adv. Sci. Eng., 5(3), 1077 (2019); https://doi.org/10.29294/IJASE.5.3.2019.1077-1084.
Y. Chen, J. Shi, Chemistry of Mesoporous Organosilica in Nanotechnology: Molecularly Organic–Inorganic Hybridization into Frameworks, Adv. Mater. 28(17), 3235 (2016); https://doi.org/10.1002/adma.201505147.
S. Jiang, M.Chekini, Z. B. Qu, Y. Wang, A.Yeltik, Y. Liu, N. A.Kotov, Chiral Ceramic Nanoparticles and Peptide Catalysis, J. Am. Chem. Soc.139, 39, 13701 (2017); https://doi.org/10.1021/jacs.7b01445.
A.M. Villalba-Rodríguez, L.Y. Martínez-Zamudio, S.A. Martínez, J.A. Rodríguez-Hernández, E.M. Melchor-Martínez, E.A. Flores-Contreras, R. Parra-Saldívar, Nanomaterial Constructs for Catalytic Applications in Biomedicine: Nanobiocatalysts and Nanozymes, Topics in Catalysis, 66, 707 (2023); https://doi.org/10.1007/s11244-022-01766-4.
J.A. Kumar, T. Krithiga, S. Manigandan, S. Sathish, A.A. Renita, P. Prakash, S. Crispin, A focus to green synthesis of metal/metal based oxide nanoparticles: Various mechanisms and applications towards ecological approach, Journal of Cleaner Production, 324, 129198 (2021); https://doi.org/10.1016/j.jclepro.2021.129198.
H. Lu, J. Wang, M.Stoller, T. Wang, Y. Bao, H. Hao, An Overview of Nanomaterials for Water and Wastewater Treatment, Adv. Mater. Sci. Eng., 1 (2016); https://doi.org/10.1155/2016/4964828.
M. Taghizadeh, M. Solgi, The Application of Essential Oils and Silver Nanoparticles for Sterilization of Bermudagrass Explants in In Vitro Culture, Int. J. Hortic. Sci. Technol., 1(2), 131 (2014); https://doi.org/10.22059/ijhst.2014.52784.
M. Diantoro, T. Suprayogi, U. Sa’adah, N. Mufti, A. Fuad, A. Hidayat, H. Nur, Modification of Electrical Properties of Silver Nanoparticle, Intech Open, London, (2018); https://doi.org/10.5772/intechopen.75682.
S. Iravani, H. Korbekandi, SV. Mirmohammadi, and B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods, Res Pharm Sci, 9(6), 358 (2014).
S. Simon, N.R.S. Sibuyi, A.O. Fadaka, S. Meyer, J. Josephs, M.O. Onani, A.M. Madiehe, Biomedical Applications of Plant Extract-Synthesized Silver Nanoparticles, Biomedicines, 10(11), 2792 (2022); https://doi.org/10.3390/biomedicines10112792.
R.K. Sharma, G. Dey, P. Banerjee, J.P. Maity, C.M. Lu, J.A. Siddique, and C.Y. Chen, New aspects of lipopeptide-incorporated nanoparticle synthesis and recent advancements in biomedical and environmental sciences: a review, J. Mater. Chem. B, 11, 10 (2022); https://doi.org/10.1039/D2TB01564A.
S. Ahmed, M. Ahmad, B. L. Swami, and S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res, 7(1), 17 (2016); https://doi.org/10.1016/j.jare.2015.02.007.
N.M. Ishak, S.K. Kamarudin, S.N. Timmiati, Green synthesis of metal and metal 443 oxide nanoparticles via plant extracts: an overview, Mater Res Express, 6, 112004 (2019); https://doi.org/10.1088/2053-1591/ab4458.
M. M. Faheem, M. Bhagat, P. Sharma, and R. Anand, Induction of p53 mediated mitochondrial apoptosis and cell cycle arrest in human breast cancer cells by plant mediated synthesis of silver nanoparticles from Bergenia ligulata (Whole plant), Int J Pharmaceutics, 619, 121710 (2022); https://doi.org/10.1016/j.ijpharm.2022.121710.
Y. Wang, A. Chinnathambi, O. Nasif, and S. A. Alharbi, Green synthesis and chemical characterization of a novel anti-human pancreatic cancer supplement by silver nanoparticles containing Zingiber officinale leaf aqueous extract, Arab J Chem, 14(4); 103081 (2021); https://doi.org/10.1016/j.arabjc.2021.103081.
B.N.B. Vaidehi, Green synthesis of silver nanoparticles using flower extract of Calliandra haematocephala, screening of antibacterial and antioxidant activities, Int J Green Pharm, 16(1), (2022).
A. Gul, A. Shaheen, I. Ahmad, B. Khattak, M. Ahmad, R. Ullah, and H. M. Mahmood, Green Synthesis, Characterization, Enzyme Inhibition, Antimicrobial Potential, and Cytotoxic Activity of Plant Mediated Silver Nanoparticle Using Ricinus communis Leaf and Root Extracts, Biomolecules, 11(2), 206 (2021); https://doi.org/10.3390/biom11020206.
O. Azizian-Shermeh, M. Valizadeh, M. Taherizadeh, and M. Beigomi, Phytochemical investigation and phytosynthesis of eco-friendly stable bioactive gold and silver nanoparticles using petal extract of saffron (Crocus sativus L.) and study of their antimicrobial activities, ApplNanosci, 10, 2907 (2020); https://doi.org/10.1007/s13204-019-01059-5.
P. Kemala, R. Idroes, K. Khairan, M. Ramli, Z. Jalil, G. M. Idroes, Green Synthesis and Antimicrobial Activities of Silver Nanoparticles Using Calotropis gigantea from Ie Seu-Um Geothermal Area, Aceh Province, Indonesia, Molecules 27(16), 5310 (2022); https://doi.org/10.3390/molecules27165310.
M. Nilavukkarasi, S. Vijayakumar, and S. P. Kumar, Biological synthesis and characterization of silver nanoparticles with Capparis zeylanica L. leaf extract for potent antimicrobial and anti proliferation efficiency,
Mater. Sci. Energy Technol. 3, 371 (2020); https://doi.org/10.1016/j.mset.2020.02.008.
M. Oves, M.A. Rauf, M. Aslam, H.A. Qari, H. Sonbol, I. Ahmad, Green synthesis of silver nanoparticles by Conocarpus Lancifolius plant extract and their antimicrobial and anticancer activities, Saudi J. Biol. Sci. 29(1), 460 (2022); https://doi.org/10.1016/j.sjbs.2021.09.007.
A.A. Alyousef, M. Arshad, R. AlAkeel, and A. Alqasim, Biogenic silver nanoparticles by Myrtus communis plant extract: biosynthesis, characterization and antibacterial activity Biotechnol. Biotechnol. Equip. 33(1), 931 (2019); https://doi.org/10.1080/13102818.2019.1629840.
T. A. Abalkhil, S. A. Alharbi, S. H. Salmen, and M. Wainwright, Bactericidal activity of biosynthesized silver nanoparticles against human pathogenic bacteria, Biotechnol. Biotechnol. Equip. 31(2), 411 (2017); https://doi.org/10.1080/13102818.2016.1267594.
P. Bhuyar, M. H. A. Rahim, S. Sundararaju, R. Ramaraj, G. P. Maniam, and N. Govindan, Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria, Beni-Suef Univ. J. Basic Appl. Sci. 9, 1 (2020); https://doi.org/10.1186/s43088-019-0031-y.
N. González-Ballesteros, M. C. Rodríguez-Argüelles, M. Lastra-Valdor, G. González-Mediero, S. Rey-Cao, M. Grimaldi, et al., J. Nanostruct. Chem. 10, 317-330 (2020); https://doi.org/10.1007/s40097-020-00352-y.
S. Ansar, H. Tabassum, N. S. Aladwan, M. Naiman Ali, B. Almaarik, S. AlMahrouqi, Eco friendly silver nanoparticles synthesis by Brassica oleracea and its antibacterial, anticancer and antioxidant properties, Sci. Rep. 10, 18564 (2020); https://doi.org/10.38/s41598-020-74371-8.
S. Kapoor, H. Sood, S. Saxena, and O. P. Chaurasia, Green synthesis of silver nanoparticles using Rhodiola imbricata and Withania somnifera root extract and their potential catalytic, antioxidant, cytotoxic and growth-promoting activities, Bioprocess Biosyst. Eng.45(2), 1 (2022); https://doi.org/10.1007/s00449-021-02666-9.
S. Donga, S. Chanda, Facile green synthesis of silver nanoparticles using Mangifera indica seed aqueous extract and its antimicrobial, antioxidant and cytotoxic potential (3-in-1 system), Artif. Cells Nanomed. Biotechnol. 49, 292 (2021); https://doi.org/10.1080/21691401.2021.1899193.
Y. He, F. Wei, Z. Ma, H. Zhang, Q. Yang, B. Yao, et al., Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities, RSC Adv. 7, 39842 (2017); https://doi.org/10.1039/C7RA05286C.
S.A. Akintelu, A.S. Folorunso, F.A. Folorunso, and A.K. Oyebamiji, Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation, Heliyon, 6, 7(2020); https://doi.org/10.1016/j.heliyon.2020.e04508.
F. Boscherini, Characterization of Semiconductor Heterostructures and Nanostructures, second ed., The Netherland, Amsterdam, 2013.
P. Ananthi, S.M.J. Kala, Plant Extract Mediated Synthesis and Characterization of Copper nanoparticles and their Pharmacological Activities, Int. J. Innov. Res. Sci.Eng. Technol. 6, 13455 (2017); https://doi.org/10.15680/IJIRSET.2017.0607206.
J.A. Wisam, A.J. Haneen, A new paradigm shift to prepare copper nanoparticles using biological synthesis and evalution of antimicrobial activities, Plant Arch. 18(2), 2020 (2018).
P. Kuppusamy, S. Ilavenil, S. Srigopalram, G.P. Maniam, M.M. Yusoff, N. Govindan, K.C. Choi, Treating of palm oil mill effluent using Commelina nudiflora mediated copper nanoparticles as a novel bio-control agent, J. Clean. Prod. 141(10), 1023 (2016). https://doi.org/10.1016/j.jclepro.2016.09.176.
M. Maruthupandy, Y. Zuo, J.S. Chen, J.M. Song, H.L. Niu, C.J. Mao, S.Y. Zhang,Y.H. Shen, Synthesis of metal oxide nanoparticles (CuO and ZnO NPs) via biological template and their optical sensor applications, Appl. Surf. Sci. 397, 167 (2017); https://doi.org/10.1016/j.apsusc.2016.11.118.
M.H.A. Syed, M. Faiz, A. Shamim, Terminalia belerica Mediated Green Synthesis of Nanoparticles of Copper, Iron and Zinc Metal Oxides as the Alternate Antibacterial Agents Against some Common Pathogens, BioNanoScience,9, 365 (2019); https://doi.org/10.1007/s12668-019-0601-4.
W. Brand Williams, Use of a Free Radical Method to Evaluate Antioxidant Activity, Food Sci. Technol. 28 25 (1995); http://dx.doi.org/10.1016/S0023-6438(95)80008-5.
B. Siripireddy, B. K. Mandal, Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity, Adv. Powder Technol. 28 (3), 785 (2017); https://doi.org/10.1016/j.apt.2016.11.026.
A. Mercy Ranjitham, R. Suja, R. Caroling, G, Sunita, Tiwari, Invitro evalution of anti oxidant, antimicrobial, anticancer activities and characterization of Brassica oleracea. VAR. Bortrytis. L synthesized silver nanoparticles, International Journal of Pharmacy and Pharmaceutical Sciences, 5(4), 239 (2013).
M. Nilavukkarasi, S. Vijayakumar, S. P. Kumar, Biological synthesis and characterization of silver nanoparticles with Capparis zeylanica L. leaf extract for potent antimicrobial and anti proliferation efficiency, Mater. Sci. Energy Technol. 3, 371 (2020); https://doi.org/10.1016/j.mset.2020.02.008.
D. Nayak, S. Pradhan, S. Ashe, P.R. Rauta, B. Nayak, Biologically synthesised silver nanoparticles from three diverse family of plant extracts and their anticancer activity against epidermoid A431 carcinoma, J. Colloid Interface Sci., 457, 329 (2015); http://dx.doi.org/10.1016/j.jcis.2015.07.012.
K. L. Niraimathi, V. Sudha, R. Lavanya, P. Brindha, Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities, Colloids Surf. B Biointerfaces, 102 288 (2013); https://doi.org/10.1016/j.colsurfb.2012.08.041.
V. Ravichandran, S. Vasanthi, S. Shalini, S. A. A. Shah, R. Harish, Green synthesis of silver nanoparticles using Atrocarpus altilis leaf extract and the study of their antimicrobial and antioxidant activity, Materials Letters, 180, 264 (2016); https://doi.org/10.1016/j.matlet.2016.05.172.
A. Munajad, C. Subroto, Fourier Transform Infrared (FTIR) Spectroscopy Analysis of Transformer Paper in Mineral Oil-Paper Composite Insulation under Accelerated Thermal Aging, Energies, 11(2), 364 (2018); https://doi.org/10.3390/en11020364.
M. Ibrahim, M. Alaam, H. El-Haes, A.F. Jalbout, A. Leon, Analysis of the structure and vibrational spectra of glucose and fructose, Ecl. Quím., São Paulo, 31(3), 15 (2006); https://doi.org/10.1590/S0100-46702006000300002.
E. Buta, M. Cantor, R.S., Tefan, R. Pop, I. Mitre Mihai Buta, Radu E. Sestras, FT-IR Characterization of Pollen Biochemistry, Viability, and Germination Capacity in Saintpaulia H. Wendl. Genotypes, Journal of Spectroscopy, (2015; https://doi.org/10.1155/2015/706370.
Y. Meng, A sustainable approach to fabricating Ag nanoparticles/PVA hybrid nanofiber and its catalytic activity. Nanomaterials, 5(2), 1124-1135 (2015); https://doi.org/10.3390/nano5021124.
R.I. Priyadharshini, G. Prasannaraj, N. Geetha, P. Venkatachalam, Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines, Appl. Biochem. Biotechnol. 174(8), 2777 (2014); https://doi.org/10.1007/s12010-014-1225-3.
K. Roy, C.K. Sarkar, C.K. Ghosh, Green synthesis of silver nanoparticles using fruit extract of malus domestica and study of its antimicrobial activity, Dig. J. Nanomater. Biostruct., 9(3), 1137 (2014).
G. Singhal, R. Bhavesh, K. Kasariya, A.R. Sharma, R.P. Singh, Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its an Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity, J. Nanopart. Res. 13, 2981(2011); https://doi.org/10.1007/s11051-010-0193-y.
A. Sudha, J. Jeyakanthan, P. Srinivasan, Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects, Resour. Efficient Technol. 3(4), 506 (2017); https://doi.org/10.1016/j.reffit.2017.07.002.
A.K. Mittal, Y. Chisti, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts, Biotechnol. Adv. 31(2), 346 (2013); https://doi.org/10.1016/j.biotechadv.2013.01.003.
P. Kuppusamy, M.M. Yusoff, G.P. Maniam, & N. Govindan, Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications - An updated report, Saudi Pharm J., 24(4), 473 (2016); https://doi.org 10.1016/j.jsps.2014.11.013.
S. Bhakya, S. Muthukrishnan, M. Sukumaran, M. Muthukumar, Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity, Appl. Nanosci. 6, 755 (2015); https://doi.org/10.1007/s13204-015-0473-z.
E. S. Contreras-Guzman, F. C. Strong, Determination of Tocopherols (Vitamin E) by Reduction of Cupric Ion, J. AOAC Int. 65(5); 1215 (1982); https://doi.org/10.1093/jaoac/65.5.1215.
S. R. Schaffazick, A. R. Pohlmann, C. A. de Cordova, T. B. Creczynski-Pasa, S. S. Guterres, Protective properties of melatonin-loaded nanoparticles against lipid peroxidation, Int. J. Pharm. 289(1-2), 209 (2005); https://doi.org/10.1016/j.ijpharm.2004.11.003.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Abhimanyu P. Pawar, Kishor S. Naktode, Arvind J. Mungole
This work is licensed under a Creative Commons Attribution 3.0 Unported License.