Experimental investigation and thermodynamic assessment of phase equilibria in the GaTe–AgGa5Te8–Te system below 600 K
DOI:
https://doi.org/10.15330/pcss.24.4.699-706Keywords:
Ag-containing compounds, Thermoelectric materials, Thermodynamic properties, Phase equilibria, Gibbs energy, EMF methodAbstract
Equilibrium T–x space of the Ag–Ga–Te system in the GaTe–AgGa5Te8–Te part was divided below 600 K into three-phase regions Ga2Te5–AgGa5Te8–Te, Ga2Te3–AgGa5Te8–Ga2Te5, Ga7Te10–AgGa5Te8–Ga2Te3, Ga3Te4–AgGa5Te8–Ga7Te10, and GaTe–AgGa5Te8–Ga3Te4 by the electromotive force (EMF) method. To accomplish accurate experimental data, the following electrochemical cells (ECs) were assembled: (−)IE|NE|SSЕ|R{Ag+}|PЕ|IE(+), where IE is the inert electrode (graphite powder), NE is the negative electrode (silver powder), SSE is the solid-state electrolyte (glassy Ag3GeS3Br), PE is the positive electrode, R{Ag+} is the region of PE that contact with SSE. At the stage of cell preparation, PE is a nonequilibrium phase mixture of the well-mixed powdered compounds Ag2Te, GaTe, Ga2Te3, and tellurium, taken in ratios corresponding to two or three different points in each of the mentioned regions. The equilibrium set of phases was formed in the R{Ag+} region at 600 K for 48 h with the participation of the Ag+ ions. Silver cations, displaced for thermodynamic reasons from the NE to the PE of the ECs, acted as catalyst, i.e., small nucleation centers of equilibrium phases. The spatial position of the established three-phase regions relative to the silver point was used to assign the overall potential-determining reactions of synthesis of the ternary AgGa5Te8 and binary Ga2Te5, Ga7Te10, Ga3Te4 compounds. For the first time, the values of the standard thermodynamic functions (Gibbs energies, enthalpies, and entropies) of these compounds were determined based on the temperature dependences of the EMF of the ECs.
References
M. Guittard, J. Rivet, F. Alapini, et al., Description du système ternaire Ag-Ga-Te, J. Common Met., 170, 373 (1991); https://doi.org/10.1016/0022-5088(91)90339-6.
H.J. Deiseroth, H.-D. Müller, Crystal structures of heptagallium decatelluride, Ga7Te10 and heptaindium decatelluride, In7Te10, Z. Für Krist.-Cryst. Mater., 210, 57 (1995); https://doi.org/10.1524/zkri.1995.210.1.57.
C. Julien, I. Ivanov, A. Khelfa, et al., Characterization of the ternary compounds AgGaTe2 and AgGa5Te8, J. Mater. Sci., 31, 3315 (1996); https://doi.org/10.1007/BF00354684.
R. Blachnik, E. Klose, Experimental investigation and thermodynamic calculation of excess enthalpies in the Ga–In–Te system, J. Alloys Compd., 305, 144 (2000); https://doi.org/10.1016/S0925-8388(00)00695-2.
A. Charoenphakdee, K. Kurosaki, H. Muta, M. Uno, S. Yamanaka, Thermal Conductivity of the Ternary Compounds: AgMTe2 and AgM5Te8 (M=Ga or In), Mater. Trans., 50, 1603 (2009); https://doi.org/10.2320/matertrans.E-M2009810.
S. Lin, W. Li, Z. Bu, B. Shan, Y. Pei, Thermoelectric p-Type Ag9GaTe6 with an Intrinsically Low Lattice Thermal Conductivity, ACS Appl. Energy Mater., 3, 1892 (2020); https://doi.org/10.1021/acsaem.9b02330.
W. Liu, J. Hu, S. Zhang, M. Deng, C.-G. Han, Y. Liu, New trends, strategies and opportunities in thermoelectric materials: A perspective, Mater. Today Phys., 1, 50 (2017); https://doi.org/10.1016/j.mtphys.2017.06.001.
Y. Shi, C. Sturm, H. Kleinke, Chalcogenides as thermoelectric materials, J. Solid State Chem., 270, 273 (2019); https://doi.org/10.1016/j.jssc.2018.10.049.
M.V. Moroz, P.Yu. Demchenko, M.V. Prokhorenko, O.V. Reshetnyak, Thermodynamic Properties of Saturated Solid Solutions of the Phases Ag2PbGeS4, Ag0.5Pb1.75GeS4 and Ag6.72Pb0.16Ge0.84S5.20 of the Ag-Pb-Ge-S System Determined by EMF Method, J. Phase Equilibria Diffus., 38, 426 (2017); https://doi.org/10.1007/s11669-017-0563-6.
M.V. Moroz, M.V. Prokhorenko, O.V. Reshetnyak, P.Yu. Demchenko, Electrochemical determination of thermodynamic properties of saturated solid solutions of Hg2GeSe3, Hg2GeSe4, Ag2Hg3GeSe6, and Ag1.4Hg1.3GeSe6 compounds in the Ag–Hg–Ge–Se system, J. Solid State Electrochem., 21, 833 (2017); https://doi.org/10.1007/s10008-016-3424-z.
Diffractom. Stoe WinXPOW, version 3.03 (Stoe Cie GmbH, Darmstadt, 2010).
W. Kraus, G. Nolze, POWDER CELL – a Program for the Representation and Manipulation of Crystal Structures and Calculation of the Resulting X-Ray Powder Patterns, J. Appl. Crystallogr., 29(3), 301 (1996); https://doi.org/10.1107/S0021889895014920.
J. Rodriguez-Carvajal, Recent Developments of the Program FULLPROF. IUCr Commission on Powder Diffraction Newsletter, 26, 12 (2001).
R.T. Downs, M. Hall-Wallace, The American Mineralogist Crystal Structure Database. Am. Mineral., 88(1), 247 (2003).
P. Villars and K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds, Release 2014/15, ASM International: Materials Park. OН, USA, 2014.
M.V. Moroz, P.Yu. Demchenko, F. Tesfaye, et al., Thermodynamic properties of selected compounds of the Ag–In–Se system determined by the electromotive force method, Phys. Chem. Solid State., 23, 575 (2022); https://doi.org/10.15330/pcss.23.3.575-581.
M. Moroz, F. Tesfaye, P. Demchenko, et al., Non-activation synthesis and thermodynamic properties of ternary compounds of the Ag–Te–Br system, Thermochim. Acta, 698, 178862 (2021); https://doi.org/10.1016/j.tca.2021.178862.
R. Blachnik, U. Stöter, The phase diagram AgI-ZnI2, Thermochim. Acta, 145, 93 (1989); https://doi.org/10.1016/0040-6031(89)85129-9.
M. Moroz, F. Tesfaye, P. Demchenko, et al., Phase Equilibria and Thermodynamics of Selected Compounds in the Ag–Fe–Sn–S System, J. Electron. Mater., 47, 5433 (2018); https://doi.org/10.1007/s11664-018-6430-3.
M. Moroz, F. Tesfaye, P. Demchenko, et al., Solid-state electrochemical synthesis and thermodynamic properties of selected compounds in the Ag–Fe–Pb–Se system, Solid State Sci., 107, 106344 (2020); https://doi.org/10.1016/j.solidstatesciences.2020.106344.
M. Moroz, F. Tesfaye, P. Demchenko, et al., The Equilibrium Phase Formation and Thermodynamic Properties of Functional Tellurides in the Ag–Fe–Ge–Te System, Energies, 14, 1314 (2021); https://doi.org/10.3390/en14051314.
M. Babanly, Y. Yusibov, N. Babanly, The EMF method with solid-state electrolyte in the thermodynamic investigation of ternary copper and silver chalcogenides, in: S. Kara (Ed.), Electromotive Force Meas. Several Syst., InTech, pp. 57–78 (2011); https://doi.org/10.5772/28934.
G.S. Hasanova, A.I. Aghazade, Y.A. Yusibov, M.B. Babanly, Thermodynamıc propertıes of the BiTe and Bi8Te9 compounds, Phys. Chem. Solid State., 21, 714 (2020); https://doi.org/10.15330/pcss.21.4.714-719.
S.Z. Imamaliyeva, I.F. Mehdiyeva, D.B. Taghiyev, M.B. Babanly, Thermodynamic investigations of the erbium tellurides by EMF method, Phys. Chem. Solid State. 21, 312 (2020); https://doi.org/10.15330/pcss.21.2.312-318.
T.M. Alakbarova, E.N. Orujlu, D.M. Babanly, S.Z. Imamaliyeva, M.B. Babanly, Solid-phase equilibria in the GeBi2Te4-Bi2Te3-Te system and thermodynamic properties of compounds of the GeTe·mBi2Te3 homologous series, Phys. Chem. Solid State., 23, 25 (2022); https://doi.org/10.15330/pcss.23.1.25-33.
N.B. Babanly, E.N. Orujlu, S.Z. Imamaliyeva, Y.A. Yusibov, M.B. Babanly, Thermodynamic investigation of silver-thallium tellurides by EMF method with solid electrolyte Ag4RbI5, J. Chem. Thermodyn., 128, 78 (2019); https://doi.org/10.1016/j.jct.2018.08.012.
S.Z. Imamaliyeva, S.S. Musayeva, D.M. Babanly, Y.I. Jafarov, D.B. Taghiyev, M.B. Babanly, Determination of the thermodynamic functions of bismuth chalcoiodides by EMF method with morpholinium formate as electrolyte, Thermochim. Acta, 679, 178319 (2019); https://doi.org/10.1016/j.tca.2019.178319.
F.J. Gravetter, L.B. Wallnau, Statistics for the behavioral sciences, 10th edition, Cengage Learning, Australia; United States, 2017.
I. Barin, Thermochemical Data of Pure Substances (Wiley, 1995).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 M. Moroz, P. Demchenko, F. Tesfaye, M. Prokhorenko, S. Prokhorenko, O. Reshetnyak
This work is licensed under a Creative Commons Attribution 3.0 Unported License.