The influence of heavy doping of TiCoSb intermetallic semiconductor with Cr atoms on structural, kinetic and energetic properties
DOI:
https://doi.org/10.15330/pcss.25.2.391-398Keywords:
semiconductor, electrical conductivity, thermopower coefficient, Fermi levelAbstract
The structural, electrokinetic, and energetic properties of the TiСо1-xCrxSb semiconductor obtained by doping TiCoSb with Cr atoms introduced into the structure by substituting Co atoms in the crystallographic position 4c were studied. It was shown that in TiСо1-xCrxSb the structural defects of donor and acceptor nature are generated simultaneously in different ratios depending on the impurity concentration. At concentrations of х ≥ 0.02, the conductivity of TiСо1-xCrxSb has a metallic character, and the contribution of current carrier scattering mechanisms to the value of electrical resistivity is of the same order as changes in the concentration of current carriers. It was established that at all temperatures in the range of concentrations x = 0–0.02, the rate of generation of donors exceeds the rate of generation of acceptors, and at concentrations x > 0.02, on the contrary, the rate of generation of acceptors is greater than that of donors. This is indicated by the positive values of thermopower coefficient α(х,Т) of TiСо1-xCrxSb for х > 0.03.
References
R. Marazza, R. Ferro, G. Rambaldi, Some phases in ternary alloys of titanium, zirconium, and hafnium, with a MgAgAs or AlCu2Mn type structure, J. Less-Common Met. 39, 341 (1975); https://doi.org/10.1016/0022-5088(75)90207-6.
V.A. Romaka, Yu.V. Stadnyk, V.Ya. Krayovskyy, L.P. Romaka, O.P. Guk, V.V. Romaka, M.M. Mykyychuk, A.M. Horyn, The latest heat-sensitive materials and temperature transducers, Lviv Polytechnic Publishing House, Lviv (2020); https://opac.lpnu.ua/bib/1131184. [in Ukrainian].
L.I. Anatychuk, Thermoelements and thermoelectric devices. Reference book, Naukova dumka, Kyiv (1979). [in Russian].
B.I. Shklovskii and A.L. Efros, Electronic properties of doped semiconductors, Springer-Verlag, Berlin, Heidelberg (1984); https://doi.org/10.1007/978-3-662-02403-4.
V.A.Romaka, Yu.V. Stadnyk, L.G. Akselrud, V.V. Romaka, D. Frushart, P. Rogl, V.N. Davydov, Yu.K. Gorelenko, Mechanism of local amorphization of a heavily doped Ti1-xVxCoSb intermetallic semiconductor, Semiconductors, 42(№7), 753 (2008); https://doi.org/10.1134/S1063782608070014.
Yu Stadnyk, V.V. Romaka, L. Romaka, L. Orovchik, A. Horyn, Synthesis, electrical transport, magnetic properties and electronic structure of Ti1-xScxCoSb semiconducting solid solution, J. Alloys Compd., 805, 840 (2019); https://doi.org/10.1016/j.jallcom.2019.07.088.
V.A. Romaka, Yu.V. Stadnyk, L.P. Romaka, A.M. Horyn, I.M. Romaniv, V.Z. Pashkevych, A.Ya. Horpeniuk, Features of structural, energetic, electrokinetic investigation of energy and electrokinetic characteristics of thermoelectric material TiCo1-xMnxSb, J. Thermoelectricity, 3, 5 (2020); http://jt.inst.cv.ua/jt/jt_2020_03_en.pdf.
T. Roisnel, J. Rodriguez-Carvajal, WinPLOTR: a windows tool for powder diffraction patterns analysis, Mater. Sci. Forum, Proc. EPDIC7 378, 118 (2001); https://doi.org/10.4028/www.scientific.net/MSF.378-381.118.
M. Schruter, H. Ebert, H. Akai, P. Entel, E. Hoffmann, G.G. Reddy, First-principles investigations of atomic disorder effects on magnetic and structural instabilities in transition-metal alloys, Phys. Rev. B, 52, 188 (1995); https://doi.org/10.1103/PhysRevB.52.188.
V. Moruzzi, J. Janak, A. Williams, Calculated Electronic Properties of Metals, Pergamon Press, NY (1978); https://doi.org/10.1016/B978-0-08-022705-4.50002-8.
N.F. Mott and E.A. Davis, Electronic processes in non-crystalline materials, Clarendon Press, Oxford (1979); https://doi.org/10.1002/crat.19720070420.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Yu. Stadnyk, L. Romaka, V.A. Romaka, A. Horyn, V.V. Romaka, T. Lukovskyy, O. Poplavskyi
This work is licensed under a Creative Commons Attribution 3.0 Unported License.