Hardness, VSM, cyclic voltammetric and DFT studies of Cesium Sulphate-doped TGS crystals

Authors

  • S. Jerin Blessy Research scholar, Reg.No.21212152132003, PG and Research Department of Physics,Pope’s College, Affiliated to Manonmaniam Sundranar University, Tirunelveli, Tamilnadu, India
  • H. Johnson Jeyakumar PG and Research Department of Physics, Pope’s College, Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India
  • S. Gracelin Juliana Department of Physics, Nazareth Margoschis College, Nazareth, Tamilnadu, India
  • P. Selvarajan Department of Physics, Aditanar College of Arts and Science, Tiruchendur, Tamilnadu, India
  • A. Antony Muthu Prabhu Department of PG Chemistry, Aditanar College of Arts and Science, Tiruchendur, Tamilnadu, India

DOI:

https://doi.org/10.15330/pcss.25.3.560-569

Keywords:

TGS, doping, solution growth technique, ferroelectric, FTIR, XRD, hardness, DFT, VSM, cyclic voltammetry

Abstract

The creation of capacitors, transducers, sensors, and infrared detectors utilise the nonlinear, ferroelectric triglycine sulphate (TGS) crystal. Cesium sulphate is incorporated into the lattice of TGS crystal to change its characteristics. Cesium sulfate-doped triglycine sulphate (CSTGS) single crystals were produced using a solution approach and a slow evaporation process. The title crystal was studied by single crystal XRD, FTIR, hardness, VSM, cyclic voltammetric and density functional theoretical (DFT) studies and the results are discussed in this paper.

References

P. Selvarajan, B.N. Das, H.B. Gon, K.V. Rao, Growth, Structural, Optical, Mechanical and Dielectric Characterization of Diammonium Hydrogen Phosphate (DAHP) Single Crystals. J. Mater. Sci. 29, 4061 (1994); https://doi.org/10.4236/jmmce.2011.1015108.

N. Balamurugan, M. Lenin, .G. Bhagavannarayana and P. Ramasamy, Growth of TGS crystals using uniaxially solution-crystallization method of Sankaranarayanan-Ramasamy. Crystal Res. Technol. 42, 151 (2007); https://doi.org/10.1002/crat.200610788.

C. Berbecaru, H.V. Alexandru, L. Pintilie A, Dutu, B. Logofatu and Radulescu, Doped versus pure TGS crystals, Materials Sci. Engg. B. 11, 141 (2005); https://doi.org/10.1016/j.mseb.2004.12.069.

Alexander McPherson, Alexander J. Malkin, Yu.G. Kuznetsov, Stanley Koszelak, Investigations on Various Studies of TriglycineSulphophosphate Crystals Doped With Cesium Chloride. J. Cryst. Growth 168, 74 (1996); https://doi.org/10.9790/4861-17002030914.

R. Muralidharan, R. Mohankumar, P.M. Ushasree, R. Jayavel and P. Ramasamy, Effect of rare- earth dopants on the growth and properties of triglycine sulphate crystals. J.Crystal Growth. 234, 545 (2002);

https://doi.org/10.1016/S0022-0248(01)01723-7.

C.S. Fang, H. Liu, H.S. Zhuo, M. Wang and D. Xu, A new modified TGS crystal. Cryst. Res. Technol. 30, 785 (1993); https://doi.org/10.1002/crat.2170300612

M.J. Ibrahim and T.M. Al-Saadi, IOP Conf. Ser.: Mater. Sci. Eng. 871, 012082 (2020); https://doi.org/10.1088/1757-899X/793/1/011001.

Mher.J. Ibrahim and TagreedM.Al-Saadi, Structural and Opticall Properties of Pure and doped Triglycine Sulphate Crystal Grown by slow evaporation technique”, AIPConfrence Proceedings 2123, 020015 (2019); http://dx.doi.org/10.1063/1.5116942.

P. Manoharan and N. Neelakanda Pillai, Archives of Applied Science Research, 5(1), 93 (2013); http://scholarsresearchlibrary.com/archive.html.

R.B. Lal & A.K. Batra, Growth and properties of triglycine sulphate (TGS) crystals: Review, Ferroelectrics, 142, 51 (1993);https://doi.org/10.1080/00150199308237884.

X. Sun, M. Wang, Q.W. Pan, W. Shi, and C.S. Fang, Study on the growth and properties of guanidine doped triglycine sulfate crystal, Crystal Research and Technology, 34(10), 1251 (1999); https://ui.adsabs.harvard.edu/link_gateway/1999CryRT..34.1251S/doi:10.1002/(SICI)1521-4079(199912)34:10%3C1251::AID-CRAT1251%3E3.0.CO;2-G.

K. Biedrzycki, Energy distribution of electron emission from -α alanine doped TGS single crystals, Solid State Communications, 118(3), 141 (2001); https://doi.org/10.1016/S0038-1098(01)00052-7.

G. Su, Y. He, H. Yao, Z. Shi, and Q. Wu, New pyroelectric crystal L-lysine-doped TGS (LLTGS), Journal of Crystal Growth, 209(1), 220 (2000); http://dx.doi.org/10.1016/S0022-0248(99)00591-6.

S. Aravazhi, R. Jayavel, and C. Subramanian, Growth and characterization of benzophenone and urea doped triglycine sulphate crystals, Ferroelectrics, 200(1-4), 279 (1997); https://doi.org/10.1080/00150199708008612.

N.T. Shanthi, P. Selvarajan, and C.K. Mahadevan, Studies on TriglycineSulfate (TGS) crystals doped with sodium bromide NaBr grown by solution method, Indian Journal of Science and Technology, 3, 49 (2009); https://doi.org/10.17485/ijst/2009/v2i3/29414.

V.V. Ghazaryan, M. Fleck, A.M. Petrosyan, Spectrochimica Acta Part A 78, 128, (2011); https://doi.org/10.1016/j.saa.2010.09.009.

J.M. De Man, F.W.Wood ,Hardness of Butter.I. Influence of Season and Manufacturing Method Microindentation hardness testing, J. Dairy Sci.41, 360 (1958); https://doi.org/10.3168/jds.S0022-0302(58)90928-7.

Y.L. Ke, F.X. Dong, Hardness of materials: studies at levels from atoms to crystals. Chinese Sci. Bull. 54, 131 (2009); https://doi.org/10.1007/s11434-008-0550-8.

P.N. Kotru, Sushma Bhat and K.K. Raina, Microhardness measurements on single crystals of gel-grown rare-earth (Nd) molybdate and paramolybdate, J. Mater., Sci. Lett. 8, 587, (1989); https://doi.org/10.1007/BF00720308.

E. Meyer, Z. ver. Deut. Ing. 52, 645, (1908);

S. Balamurugan, P.Ramasamy, Bulk growth of <101> KDP crystal by Sankaranarayanan – Ramasamy method and it’s characterization, Mater. Chem. Phy. 112, 1, (2008); https://doi.org/10.1016/j.matchemphys.2008.05.058.

P.J. Blau, B.R.Lawn, Microindentation Techniques in Materials Science and Engineering, (1985).

W.A. Wooster, Physical properties and atomic arrangements in crystals, Rep. Progr. Phys. 16, 62, (1953); https://doi.org/10.1088/0034-4885/16/1/302.

M. N. Ravishankar, M. A. Ahlam, R. Chandramani and A. P. Gnana Prakash, “Comparative Study of Mechanical, Dielectric and Electrical Properties of Solution Grown Semi-Organic NLO Crystal Glycine with Additives-Ammonium Oxalate, Potassium and Barium Nitrate”, Indian Journal of Pure and Applied Physics, 51, 55-59 (2013).

B.R Lawn, E.R Fuller, Equilibrium penny-like cracks in indentation fracture. J. Mater. Sci. 10, 2016 (1975); http://dx.doi.org/10.1007/BF00557479.

K Nihara, R Morena, D.P.H. HHasselman, Evaluationof KIc of brittle solids by the indentation method with low crack-to-indent ratios. J. Mater. Sci. Lett. 1, 13, (1982); https://doi.org/10.1007/BF00724706.

S.S. Kurtz and T. Perry, A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39, 3798, (1968); http://dx.doi.org/10.1063/1.1656857.

M. Krishna Mohan, S. Ponnusamy, C. Muthamizhchelvan, Optics and Laser Technology 97, 321 (2017); https://doi.org/10.1142/s0219581x17600365.

K. Thilaga, P. Selvarajan, S.M. Abdul Kadar, Photoluminescence, Impedance, Thermal Characteristics and Hirshfeld Surface Analysis of Potassium Bisulphate Single Crystals for Third Order NLO Applications.East European Journal of Physics, 145, (2021); https://doi.org/10.26565/2312-4334-2021-4-19.

L. Bányai, Y.Z. Hu, M. Lindberg, S.W. Koch, Phys. Rev. B Condens. Matter Mater. Phys, 38, 8142 (1988); https://doi.org/10.1007/978-1-4615-3726-7_41.

N. SurendraBabu, D. Jayaprakash, Global and reactivity descriptors studies of cyanuric acid tautomers in different solvents by using of density functional theory (DFT). Int J Sci Res 4:,615 (2015); https://www.ijsr.net/getabstract.php?paperid=19051501.

H. Ouafy, M. Aamor, M. Oubenali, M. Mbarki, EL.A. Haimouti, EL T. Ouafy Molecular Structure, electrostatic potential and HOMO, LUMO studies of 4-aminoaniline, 4-nitroaniline and 4-isopropylaniline by DFT. Sci Tech Asia 27, 9 (2002); https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/242269.

L.W. Chung, W.M.C. Sameera, R. Ramozzi, A.J. Page, M. Hatanaka, G.P. Petrova, K. Morokuma, The ONIOM method and its applications. Chem Rev 115, 5678 (2015); https://doi.org/10.1021/cr5004419.

E.D. Glendening, C.R. Landis, F. Weinhold, NBO 6.0: Natural bond orbital analysis program. J Comp Chem 34, 1429 (2013); https://doi.org/10.1002/jcc.23266.

L.I.U. Shu-Bin, Conceptual density functional theory and some recent developments, Acta Phys. Chim. Sin. 25(3), 590 (2009); https://doi.org/10.3866/PKU.WHXB20090332.

P. Geerlings, F. De Proft, W. Langenaeker, Conceptual density functional theory, Chem. Rev. 103(5), 1793 (2003); https://doi.org/10.1021/cr990029p.

H. Chermette, Chemical reactivity indexes in density functional theory, J. Comput.Chem. 20(1), 129 (1999); https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1%3C129::AID-JCC13%3E3.0.CO;2-A.

L.H. Mendoza-Huizar, Chemical reactivity of isoproturon, diuron, linuron, and chlorotoluron herbicides in aqueous phase: a theoretical quantum study employingglobal and local reactivity descriptors, J. Chem. 1, 9 (2015); https://doi.org/10.1155/2015/751527.

P.K. Chattaraj, U. Sarkar, D.R. Roy, Electrophilicity index, Chem. Rev. 106(6), 206 (2006); https://dpi.org/10.1021/cr040109f.

Z. Demircioglu, A. Kastas, O. Buyukgungor, Theoretical analysis (NBO, NPA, Mulliken Population Method) and molecular orbital studies (hardness, chemical potential, electrophilicity and Fukui function analysis) of €-2-((4-hydroxy-2-methylphenylimino)methyl)-3-methoxyphenol, J. Mol. Struct. 1091, 183 (2015); https://doi.org/10.1016/j.molstruc.2015.02.076.

Downloads

Published

2024-09-16

How to Cite

Blessy, S. J., Jeyakumar, H. J., Juliana, S. G., Selvarajan, P., & Prabhu, A. A. M. (2024). Hardness, VSM, cyclic voltammetric and DFT studies of Cesium Sulphate-doped TGS crystals. Physics and Chemistry of Solid State, 25(3), 560–569. https://doi.org/10.15330/pcss.25.3.560-569

Issue

Section

Scientific articles (Physics)