Effect of Thermal Annealings and Cooling Methods on Electrophysical Parameters of n Si Doped with Phosphorus Impurity Via the Melt and by Nuclear Transmutation Technique
DOI:
https://doi.org/10.15330/pcss.19.1.40-47Keywords:
electrophysical parameters, n‑silicon, doping techniques, anisotropy parameters, thermal annealing, cooling rateAbstract
The effect of the different regimes of heat treatment on the kinetics of electronic processes in silicon crystals doped with phosphorus impurity via the melt and by nuclear transmutation technique. The most significant influence of cooling under intermediate value of cooling rate (ucl » 15 оС/min) after high-temperature annealing on the main electrophysical parameters of the transmutation-doped n‑Si áPñ crystals was established. Features of changes of the anisotropy parameters of mobility and thermal electromotive force measured on silicon crystals of different doping techniques both in the initial state, and after high-temperature annealing when using different cooling rates, were found and explained.
References
[1] A. I. Belous, V. A. Solodukha, S. V. Shvedov, Kosmicheskaya elektronika. V 2-kh knigakh (Space Electronics. In 2 books) (Tekhnosfera, Moscow, 2015) (in Russian).
[2] J. Vanhellemont, E. Simoen, J. Electrochem. Soc. 154 (7), H572 (2007).
[3] O. V. Tretyak, V. V. Il'chenko, Fizychni osnovy napivprovidnykovoyi elektroniky (Physical Principles of Semiconductor Electronics) (VPTs "Kyivs'kyi universytet", Kyiv, 2011) (in Ukrainian).
[4] A. V. Naumov, Izvestiya vysshikh uchebnykh zavedeniy. Tsvetnaya metallurgiya (4), 32 (2007) (in Russian).
[5] Yu. M. Smirnov, I. A. Kaplunov, Materialovedenie (5), 48 (2004) (in Russian).
[6] I. A. Kaplunov, Yu. M. Smirnov, A. I. Kolesnikov, Opticheskiy zhurnal (Journal of Optical Technology) 72 (2), 61 (2005) (in Russian).
[7] N. N. Gerasimenko, Yu. N. Parkhomenko, Kremniy – material nanoelektroniki (Silicon – Material for Nanoelectronics) (Tekhnosfera, Moscow, 2007) (in Russian).
[8] G. I. Zebrev, Fizicheskie osnovy kremnievoy nanoelektroniki (Physical Bases of Silicon Nanoelectronics) (BINOM. LZ, Moscow, 2012) (in Russian).
[9] V. A. Gurtov, Tverdotel'naya elektronika (Solid State Electronics) (Tekhnosfera, Moscow, 2008) (in Russian).
[10] B. I. Shklovskii, A. L. Efros, Electronic Properties of Doped Semiconductors (Springer Science & Business Media, Berlin-Heidelberg, 2013). ISBN: 3662024039.
[11] B. V. Zeghbroeck, Principles of Semiconductor Devices (Boulder, 2011), http://ece-www.colorado.edu/~bart/book/.
[12] V. A. Gurtov, R. N. Osaulenko, Fizika tverdogo tela dlya inzhenerov (Solid State Physics for Engineers) (Tekhnosfera, Moscow, 2007) (in Russian).
[13] S. M. Sze, M.-K. Lee, Semiconductor Devices. Physics and Technology. 3rd edition (John Wiley & Sons Inc., New York, 2016).
[14] B. I. Boltaks, Diffuziya i tochechnye defekty v poluprovodnikakh (Diffusion and Point Defects in Semiconductors) (Nauka, Leningrad, 1972) (in Russian).
[15] V. S. Vavilov, A. R. Chelyadinskiy, Uspekhi fizicheskikh nauk 165 (3), 347 (1995) (in Russian).
[16] S. S. Gorelik, M. Ya. Dashevskiy, Materialovedenie poluprovodnikov i dielektrikov (Material Science of Semiconductors and Dielectrics) (MISIS, Moscow, 2003) (in Russian).
[17] P. I. Barans'kyy, O. Ye. Byelyayev, G. P. Gaidar, V. P. Klad'ko, A. V. Kuchuk, Problemy diahnostyky real'nykh napivprovidnykovykh krystaliv (Problems of Real Semiconductor Crystals Diagnostics) (Naukova dumka, Kyiv, 2014) (in Ukrainian).
[18] R. Triboulet, Crystal Research and Technology 38 (3-5), 215 (2003).
[19] I. S. Shlimak, Fizika tverdogo tela 41(5), 794 (1999) (in Russian).
[20] M. Schnöller, Neutron transmutation doping (NTD) of silicon. In book: Silicon. Evolution and Future of a Technology. Eds. P. Siffert and E.F. Krimmel (Springer, Berlin-Heidelberg, 2004). Part V. P. 231–241.
[21] G. P. Gaidar, P. I. Baranskii, Physica B: Condensed Matter 441, 80 (2014).
[22] W. E. Haas, M. S. Schnoller, J. Electron. Mater. 5 (1), 57 (1976).
[23] H. Bender, phys. stat. sol. (a) 86 (1), 245 (1984).
[24] V. M. Babich, N. I. Bletskan, E. F. Venger, Kislorod v monokristallakh kremniya (Oxygen in the Silicon Single Crystals) (Interpress LTD, Kiev, 1997) (in Russian).
[25] C. Herring, J. Appl. Phys. 31 (11), 1939 (1960).
[26] G. P. Gaidar, Physics and Chemistry of Solid State, 18(1), 34 (2017) (in Ukrainian).
[2] J. Vanhellemont, E. Simoen, J. Electrochem. Soc. 154 (7), H572 (2007).
[3] O. V. Tretyak, V. V. Il'chenko, Fizychni osnovy napivprovidnykovoyi elektroniky (Physical Principles of Semiconductor Electronics) (VPTs "Kyivs'kyi universytet", Kyiv, 2011) (in Ukrainian).
[4] A. V. Naumov, Izvestiya vysshikh uchebnykh zavedeniy. Tsvetnaya metallurgiya (4), 32 (2007) (in Russian).
[5] Yu. M. Smirnov, I. A. Kaplunov, Materialovedenie (5), 48 (2004) (in Russian).
[6] I. A. Kaplunov, Yu. M. Smirnov, A. I. Kolesnikov, Opticheskiy zhurnal (Journal of Optical Technology) 72 (2), 61 (2005) (in Russian).
[7] N. N. Gerasimenko, Yu. N. Parkhomenko, Kremniy – material nanoelektroniki (Silicon – Material for Nanoelectronics) (Tekhnosfera, Moscow, 2007) (in Russian).
[8] G. I. Zebrev, Fizicheskie osnovy kremnievoy nanoelektroniki (Physical Bases of Silicon Nanoelectronics) (BINOM. LZ, Moscow, 2012) (in Russian).
[9] V. A. Gurtov, Tverdotel'naya elektronika (Solid State Electronics) (Tekhnosfera, Moscow, 2008) (in Russian).
[10] B. I. Shklovskii, A. L. Efros, Electronic Properties of Doped Semiconductors (Springer Science & Business Media, Berlin-Heidelberg, 2013). ISBN: 3662024039.
[11] B. V. Zeghbroeck, Principles of Semiconductor Devices (Boulder, 2011), http://ece-www.colorado.edu/~bart/book/.
[12] V. A. Gurtov, R. N. Osaulenko, Fizika tverdogo tela dlya inzhenerov (Solid State Physics for Engineers) (Tekhnosfera, Moscow, 2007) (in Russian).
[13] S. M. Sze, M.-K. Lee, Semiconductor Devices. Physics and Technology. 3rd edition (John Wiley & Sons Inc., New York, 2016).
[14] B. I. Boltaks, Diffuziya i tochechnye defekty v poluprovodnikakh (Diffusion and Point Defects in Semiconductors) (Nauka, Leningrad, 1972) (in Russian).
[15] V. S. Vavilov, A. R. Chelyadinskiy, Uspekhi fizicheskikh nauk 165 (3), 347 (1995) (in Russian).
[16] S. S. Gorelik, M. Ya. Dashevskiy, Materialovedenie poluprovodnikov i dielektrikov (Material Science of Semiconductors and Dielectrics) (MISIS, Moscow, 2003) (in Russian).
[17] P. I. Barans'kyy, O. Ye. Byelyayev, G. P. Gaidar, V. P. Klad'ko, A. V. Kuchuk, Problemy diahnostyky real'nykh napivprovidnykovykh krystaliv (Problems of Real Semiconductor Crystals Diagnostics) (Naukova dumka, Kyiv, 2014) (in Ukrainian).
[18] R. Triboulet, Crystal Research and Technology 38 (3-5), 215 (2003).
[19] I. S. Shlimak, Fizika tverdogo tela 41(5), 794 (1999) (in Russian).
[20] M. Schnöller, Neutron transmutation doping (NTD) of silicon. In book: Silicon. Evolution and Future of a Technology. Eds. P. Siffert and E.F. Krimmel (Springer, Berlin-Heidelberg, 2004). Part V. P. 231–241.
[21] G. P. Gaidar, P. I. Baranskii, Physica B: Condensed Matter 441, 80 (2014).
[22] W. E. Haas, M. S. Schnoller, J. Electron. Mater. 5 (1), 57 (1976).
[23] H. Bender, phys. stat. sol. (a) 86 (1), 245 (1984).
[24] V. M. Babich, N. I. Bletskan, E. F. Venger, Kislorod v monokristallakh kremniya (Oxygen in the Silicon Single Crystals) (Interpress LTD, Kiev, 1997) (in Russian).
[25] C. Herring, J. Appl. Phys. 31 (11), 1939 (1960).
[26] G. P. Gaidar, Physics and Chemistry of Solid State, 18(1), 34 (2017) (in Ukrainian).
Downloads
Published
2018-03-15
How to Cite
Gaidar, G. P. (2018). Effect of Thermal Annealings and Cooling Methods on Electrophysical Parameters of n Si Doped with Phosphorus Impurity Via the Melt and by Nuclear Transmutation Technique. Physics and Chemistry of Solid State, 19(1), 40–47. https://doi.org/10.15330/pcss.19.1.40-47
Issue
Section
Review