Interaction of the components in the Gd-Mn-Sn ternary system at 873 and 673 K
DOI:
https://doi.org/10.15330/pcss.19.1.60-65Keywords:
intermetallics, ternary system, phase equilibria, crystal structure, solid solutionAbstract
The interaction of the components in the Gd-Mn-Sn ternary system was studied using the methods of X-ray and microstructure analyses, in the whole concentration range. The phase diagrams of the Gd-Mn-Sn system were constructed at 873 and 673 K. At both temperature of investigation the Gd-Mn-Sn system is characterized by existence of two ternary compounds: GdMn6Sn6 (MgFe6Ge6 structure type, space group P6/mmm) and Gd4Mn4Sn7 (Zr4Co4Ge7 structure type, space group I4/mmm). The formation of the interstitial solid solution GdMnхSn2 based on GdSn2 (ZrSi2-type) binary compound was found up to 10 at. % Mn at 873 K and 673 K. The existence of the substitutional solid solution based on GdMn2 (MgCu2-type) was observed up to 5 at.% Sn and 3 at. % Sn at 873 K and 673 K, respectively.
References
[2] R. V. Skolozdra, in: K. A. Gschneidner, Jr. and L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 24, 1997, p. 399.
[3] F. Weitzer, A. Leithe Jasper, K. Hiebl, P. Rogl, J. Appl. Phys. 73, 8447 (1993).
[4] B. Malaman, G. Venturini, B. Chafik El Idrissi, E. Ressouche, J. Alloys Compd. 252, 41 (1997).
[5] B. Chafik El Idrissi, G. Venturini, B. Malaman, D. Fruchart, J. Less-Common Met. 175, 143 (1991).
[6] T. Mazet, R. Welter, B. Malaman, J. Magn. Magn. Mater. 204, 11 (1999).
[7] V. V. Romaka, N. O. Melnychenko, Yu. K. Gorelenko, L. P. Romaka, Xth International Conference on Crystal Chemistry of Intermetallic Compounds (Lviv, 2007), p. 35.
[8] B. Malaman, G. Venturini, R. Welter, J.P. Sanchez, P. Vulliet, E. Ressouche, J. Magn. Magn. Mater. 202, 519 (1999).
[9] V. Romaka, L. Romaka, V. Tkachuk, Bull. of Lviv Univ., Chem., 52, 48 (2011).
[10] X.-W. Lei, C.-L. Hu, J.-G. Mao, J. Solid State Chem. 183, 2031 (2010).
[11] X.-W. Lei, G.-H. Zhong, M.-J. Li, J.-G. Mao, J. Solid State Chem. 181, 2448 (2008).
[12] V. V. Romaka, L. P. Romaka, V. Ya. Krayovskiy, Yu. V. Stadnyk, Stations of rare-earth and transition metals (Lviv Polytechnic, Lviv, 2015).
[13] V. Romaka, Y. Gorelenko, L. Romaka, Bull. of Lviv Univ., Chem., 49, 3 (2009).
[14] L. Romaka, V.V. Romaka, E. K. Hlil, D. Fruchart, Chem. Met. Alloys 2, 68 (2009).
[15] L. Romaka, I. Romaniv, V. V. Romaka, A. Horyn, Yu. Stadnyk, Chem. Met. Alloys 9, 135 (2016).
[16] T. Roisnel, J. Rodriguez-Carvajal, WinPLOTR: a Windows tool for powder diffraction patterns analysis, Mater. Sci. Forum, 378–381, 118 (2001).
[17] T. B. Massalski, Binary Alloys Phase Diagrams (ASM International, Metals Park, Ohio, 1990).
[18] U. P. Singh, A. K. Pal, L. Chandrasekaran, K. P. Gupta, Transactions of the Metallurgical Society of AIME, 242, 1661 (1968).
[19] A. Palenzona, P. Manfrinetti, J. Alloys Compd. 201, 43 (1993).
[20] R. V. Skolozdra, L. G. Akseruld, V. K. Pecharski, O. E. Koratskaya, Dokl. AN UkrSSR, B, 12, 51 (1986).
[21] K. Ichinose, J. Phys. Soc. Jpn. 56, 2908 (1987).
[22] M. Francois, G. Venturini, B. Malaman, B. Roques, J. less-Common Met. 160, 197 (1990).
[23] B. Malaman, G. Venturini, B. Roques, Mater. Res. Bull. 23, 1629 (1988).
[24] F. E. Wang, J. V. Gilfrich, Acta Crystallogr. 21, 476 (1966).