Design of digital-to-analogue signal converters for sensor microsystems on a crystal
DOI:
https://doi.org/10.15330/pcss.25.2.375-379Keywords:
digital-to-analogue converter, MicroWind software, submicron technologyAbstract
The results of computer simulation of the developed R-2R digital-to-analogue converter design are given. Results with output voltage values for different digital input code are also given. The topology of such device is proposed, and its operation is modulated. Thus, the MicroWind software application was used to modelling and develop the operation of the digital signal to analogue converter, as it is an open-source software tool for all users, which allows the design and simulation of an integrated circuit at the physical description (IC) level.
References
S. Balasubramanian, V. J.Patel, & W. Khalil, Current and Emerging Trends in the Design of Digital-to-Analog Converters. In: Carbone, P., Kiaei, S., Xu, F. (eds) Design, Modeling and Testing of Data Converters. Signals and Communication Technology. Springer, Berlin, Heidelberg, 83 (2014); https://doi.org/10.1007/978-3-642-39655-7_3.
K. V. Ogorodnyk, B. P. Knysh, P. M. Ratushny, O. O. Lazarev, Modeling in electronics: a study guide. VNTU, Vinnytsia, 118 p. (2017).
O. Aiello, P. Crovetti, & M. Alioto. Fully synthesizable low-area analogue-to-digital converters with minimal design effort based on the dyadic digital pulse modulation, IEEE Transactions on Circuits and Systems, 66(8), 70890 (2020); https://doi.org/10.1109/ACCESS.2020.2986949.
M. Gustavsson, J. J. Wikner, N. N. Tan, M. Gustavsson, J. J. Wikner, & N. N. Tan. Overview of D/A Converter Architectures, CMOS Data Converters for Communications, 87 (2002); https://doi.org/10.1007/0-306-47305-4_4.
Jaime Castillo-Leon, Winnie Svendsen, Maria Dimaki, Valentina Arima, Muhammad Akram, Sandrine Miserere, Christiane Neumann, G. Kipling. Lab-on-a-Chip Devices and Micro-Total Analysis Systems, A Practical Guide (2015); https://doi.org/10.1007/978-3-319-08687-3.
Athanasios Giannitsis. Microfabrication of biomedical lab-on-chip devices. A review, Estonian Journal of Engineering, 17, 109 (2011); https://doi.org/10.3176/eng.2011.2.03.
P. Abgrall and A.-M. Gué. Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review, J. Micromech. Microeng., 17 R15 (2007); https://doi.org/10.1088/0960-1317/17/5/R01.
D.C. Duffy, J. Cooper McDonald, O. J. A. Schueller and G. M. Whitesides. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Anal. Chem., 70, 4974 (1998); https://doi.org/10.1021/ac980656z.
S. Zare Harofte, et al., Recent Advances of Utilizing Artificial Intelligence in Lab on a Chip for Diagnosis and Treatment, Small, 18(42), 2203169 (2022); https://doi.org/10.1002/smll.202203169.
S.-I. Funano, N. Ota, and Y. Tanaka. A simple and reversible glass–glass bonding method to construct a microfluidic device and its application for cell recovery, Lab on a Chip, 21(11), 2244 (2021); https://doi.org/10.1039/D1LC00058F.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 N.R. Ilnytskyi, T.R. Sorokhtey, V.M. Umantsiv, M.F. Pavlyuk, L.I. Nykyruy, R.V. Ilnytskyi
This work is licensed under a Creative Commons Attribution 3.0 Unported License.