Advantages of Direct Laser Writing for Enhancing the Resolution of Diffractive Optical Element Fabrication Processes

Authors

  • V.V. Petrov Institute for Information Recording of NAS of Ukraine, Kyiv, Ukraine
  • А.А. Kryuchyn Institute for Information Recording of NAS of Ukraine, Kyiv, Ukraine
  • Ie.V. Beliak Institute for Information Recording of NAS of Ukraine, Kyiv, Ukraine
  • D.Yu. Manko Institute for Information Recording of NAS of Ukraine, Kyiv, Ukraine
  • I.V. Kosyak Institute for Information Recording of NAS of Ukraine, Kyiv, Ukraine
  • O.G. Melnik Institute for Information Recording of NAS of Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.3.587-594

Keywords:

diffractive optical elements, modulation disks, resolution, direct laser writing, submicron structures, chalcogenide semiconductors, thermal exposure regime

Abstract

A technology for direct laser writing of code sequences on modulation disks has been developed and implemented, ensuring high accuracy and reliability in the process of forming structural elements. The main advantages of applying direct laser writing compared to contact lithography for forming submicron-sized elements have been demonstrated. The proposed technology is characterized by high resolution and flexibility in configuring the parameters of the optical recording system, making it suitable for a wide range of applications in micro-optics. Direct optical writing is presented as a promising approach for enhancing the resolution of optical systems used in recording submicron-sized diffractive optical elements, as this technology enables the creation of complex optical structures. Additionally, a detailed classification of current approaches for further increasing the resolution of the optical recording system was conducted, including the application of a saturated absorber layer on the photosensitive surface, the use of a laser beam with intensity modeled by a Bessel function, and the synthesis of photosensitive materials with optimized exposure characteristics, ensuring high efficiency and accuracy in the process of direct laser writing.

References

Iu.L. Vynnykov, S.F. Pichuhin, O.O. Dovzhenko, A.O. Dmytrenko, P.P. Voskobiinyk, A.V. Yakovliev, V.V. Petrov, A.A. Kryuchyn, V. M. Rubish, & M.L. Trunov, (2022). Recording of micro/nanosized elements on thin films of glassy chalcogenide semiconductors by optical radiation. Chalcogenides - Preparation and Applications. https://doi.org/10.5772/intechopen.102886.

А.В. Коротун, А.О. Коваль, А.А. Крючин, В.М. Рубіш, В.В. Петров, І.М. Тітов, Нанофотонні технології. Сучасний стан і перспективи. Ужгород: ФОП Сабов А.М. (2019).

Петров, В.В., Антонов, Е.Е., Крючин, А.А., Шанойло, С.М. Микропризмы в офтальмологии. Київ, Наук. думка, (2019).

S. Kar, Metamaterials and metasurfaces. Basics and trends. MDPI - Multidisciplinary Digital Publishing Institute. (2023); https://doi.org/10.1088/978-0-7503-5532-2.

V.V. Petrov, Z. Le, A.A. Kryuchyn, S.M. Shanoylo, M. Fu, Ie.V. Beliak, D.Yu. Manko, A.S. Lapchuk, E.M. Morozov, Long-term storage of digital information. Аkademperiodyka. Kyiv. (2018); https://doi.org/10.15407/Аkademperiodyka.360.148.

B. Berčič, A. Drnovšek, & D. Mihailović, Electron beam lithography. Handbook of Microscopy for Nanotechnology.287 (2009); https://doi.org/10.1007/1-4020-8006-9_10.

K. Stokes, K. Clark, D. Odetade, M. Hardy, P. Goldberg Oppenheimer, Advances in lithographic techniques for precision nanostructure fabrication in biomedical applications. Discov Nano, 18(1), 153 (2023); https://doi.org/10.1186/s11671-023-03938-x.

A.A. Kryuchyn, V.V. Petrov, S.O. Kostyukevych, High density optical recording in thin chalcogenide films. Journal of Optoelectronics and Advanced Materials. 13(11-12), р.1487 (2011).

A.A. Kryuchyn, V.V. Petrov, V.M. Rubish, M.L. Trunov, P.M. Lytvyn, S.A. Kostyukevich, Formation of nanoscale structures on chalcogenide films. Physica Status Solidi (B). (2017); https://doi.org/10.1002/pssb.201700405 .

A. Karimbana-Kandy, J. Lumeau, J.-Y. Natoli, & K. Iliopoulos, 2D chalcogenide thin films for super-resolved laser structuring. EPJ Web of Conferences, 287, 04004 (2023); https://doi.org/10.1051/epjconf/202328704004.

R.-N. Verrone, A. Campos, M. Cabie, Te3 layers: development and characterization. Advances in Optical Thin Films VII, SPIE, Spain-2021. https://doi.org/10.1117/12.2597345.

D. Coiras, R.-N. Verrone, A. Campos, M. Cabie, L. Gallais, M. Minissale, J. Lumeau, J.-Y. Natoli, K. Iliopoulos, Laser Annealing of Sb2Te3 2D Layers towards Nonlinear Optical Applications. Optics 3, 234 (2022); https://doi.org/10.3390/opt3030023.

M. R. Wang, & X. G. Huang, Subwavelength-resolvable focused non-Gaussian beam shaped with a binary diffractive optical element. Applied Optics, 38(11), 2171 (1999); https://doi.org/10.1364/ao.38.002171.

B. Park, H. Lee, & S. Jeon, Inside front cover: Reflection‐mode switchable subwavelength bessel‐beam and gaussian‐beam photoacoustic microscopy in vivo. Journal of Biophotonics, 12(2), (2019); https://doi.org/10.1002/jbio.201970002.

O. Wheeler, Femtosecond vs. nanosecond laser damage threshold. Understanding laser damage mechanism differences between femtosecond and nanosecond lasers promotes efficiency and longevity of laser systems. Laser Focus World. Edmund Optics. (2024); https://www.laserfocusworld.com/optics.

N. Stsepuro, P. Nosov, M. Galkin, G. Krasin, M. Kovalev, & S. Kudryashov, Generating bessel-gaussian beams with controlled axial intensity distribution. Applied Sciences, 10(21), 7911 (2020); https://doi.org/10.3390/app10217911.

M.K. Bhuyan, F. Courvoisier, H.S. Phing, O. Jedrkiewicz, S. Recchia, P. Di Trapani, & J.M. Dudley. Laser micro- and nanostructuring using femtosecond Bessel beams. The European Physical Journal Special Topics, 199(1), 101 (2011); https://doi.org/10.1140/epjst/e2011-01506-0.

E. Stankevičius, M. Garliauskas, M. Gedvilas, & G. Račiukaitis, Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures. Optics Express, 23(22), 28557 (2015); https://doi.org/10.1364/oe.23.028557.

D.-I. Kim, H.-G. Rhee, J.-B. Song, & Y.-W. Lee, High-speed and Precision Auto-focusing system for direct laser lithography. SPIE Proceedings. (2009); https://doi.org/10.1117/12.825191.

Y. Yang, E. Jia, X. Ma, C. Xie, B. Liu, Y. Li, & M. Hu, High throughput direct writing of a mesoscale binary optical element by femtosecond long focal depth beams. Light: Advanced Manufacturing, 4(4), 1 (2023); https://doi.org/10.37188/lam.2023.042.

J. Jue, Z. Gan, Z. Luo, & K. Li, Direct laser writing of functional QD–polymer structure with high resolution. Materials, 16(6), 2456 (2023); https://doi.org/10.3390/ma16062456.

G. Chen, J. Zheng, Z. Wang, K. Zhang, Z. Mo, X. Liu, T. Gao, Y. Wang, & J. Wei, Fabrication of micro/nano multifunctional patterns on optical glass through chalcogenide heat-mode resist AgInSbTe. Journal of Alloys and Compounds, 867, 158988 (2021). https://doi.org/10.1016/j.jallcom.2021.158988.

Published

2024-09-19

How to Cite

Petrov, V., Kryuchyn А., Beliak, I., Manko, D., Kosyak, I., & Melnik, O. (2024). Advantages of Direct Laser Writing for Enhancing the Resolution of Diffractive Optical Element Fabrication Processes. Physics and Chemistry of Solid State, 25(3), 587–594. https://doi.org/10.15330/pcss.25.3.587-594

Issue

Section

Scientific articles (Technology)

Most read articles by the same author(s)