Photocatalytic degradation of methylene blue in aqueous media using magnesium-substituted copper ferrite as a magnetic catalyst

Authors

  • Julia Mazurenko Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine; Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
  • Larysa Kaykan G.V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine,Kyiv, Ukraine
  • Volodymyr Moklyak G.V. Kurdyumov Institute for Metal Physics, N.A.S. of Ukraine,Kyiv, Ukraine; Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine
  • Mykhailo Petryshyn Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • Oleksandr Mazurenko Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
  • Sofiia Leleko Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.3.605-616

Keywords:

Copper Nanoferrite, Photocatalytic Degradation, Methylene Blue, Kinetics Fitting, Langmuir-Hinshelwood model, Weibull distribution model

Abstract

In this study, copper nanosized ferrites substituted with magnesium ions were synthesized using the sol-gel self-combustion method, with polyethylene glycol (MW 2000) serving as both fuel and chelating agent. Structural properties were investigated using X-ray diffraction. It was confirmed that all samples crystallized as cubic spinels with space group Fd3m. Optical studies showed band gaps increasing from 1.51 eV for CuFe2O4 to 1.62 eV for MgFe2O4, suggesting modifications in electronic structure due to magnesium substitution. Photocatalytic studies revealed that CuFe2O4 exhibited the most efficient degradation of Methylene Blue dye, with near-complete degradation at 160 minutes. Magnesium-substituted samples (x = 0.4 and x = 0.6) also showed significant degradation, though at a slower rate compared to pure CuFe2O4. Photocatalytic performance, particularly in degrading Methylene Blue, was evaluated using various kinetic models such as First- and Second-Order Kinetics, the Langmuir-Hinshelwood model, and the two-parameter Weibull distribution.

Author Biography

Julia Mazurenko, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine; Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland

кандидат фізико-математичних наук, асистент кафедри медичної інформатики, медичної та біологічної фізики Івано-Франківського Національного медичного університету

References

P.A. Udhaya, A. Ahmad, M. Meena, M.A.J. Queen, M. Aravind, P. Velusamy, T.M. Almutairi, A.A.A. Mohammed, S. Ali, Copper Ferrite Nanoparticles Synthesized Using a Novel Green Synthesis Route: Structural Development and Photocatalytic Activity, Journal of Molecular Structure, 1277, 134807 (2023); https://doi.org/10.1016/j.molstruc.2022.134807.

N.A.H. Mohammed, R. N. Shamma, S. Elagroudy, A. Adewuyi, Copper Ferrite Immobilized on Chitosan: A Suitable Photocatalyst for the Removal of Ciprofloxacin, Ampicillin and Erythromycin in Aqueous Solution, Catalysis Communications, 182, 106745 (2023); https://doi.org/10.1016/j.catcom.2023.106745.

J.A. Jaén, M. Coronado, E. Chung, A. Muñoz, M. Denvers, G. Caballero-Manrique, Structural and Electrochemical Characterization of Tetragonal Copper Ferrite Nanoparticles, Interactions, 245(1) (2024); https://doi.org/10.1007/s10751-024-01848-7.

M.Á. Cobos, J.A. Jiménez, I. Llorente, P. de la Presa, A. Hernando, Ball Milling and Annealing Effect in Structural and Magnetic Properties of Copper Ferrite by Ceramic Synthesis, Journal of Alloys and Compounds, 1006, 176206 (2024); https://doi.org/10.1016/j.jallcom.2024.176206.

R. Rajini, A. Christy Ferdinand, Effects of Annealing on the Structural, Morphological and Magnetic Properties of CuFe₂O₄ Ferrite Nanoparticles Synthesized by Chemical Precipitation, Chemical Data Collections, 44, 100985 (2023); https://doi.org/10.1016/j.cdc.2022.100985.

A. Sivakumar, S.S.J. Dhas, A.I. Almansour, R.S. Kumar, N. Arumugam, A.M.B.S. Dhas, Assessment of Crystallographic and Magnetic Phase Stabilities of Cubic Copper Ferrite at Shocked Conditions, Journal of Materials Science: Materials in Electronics, 32(9), 12732 (2021); https://doi.org/10.1007/s10854-021-05910-w.

K.N. Harish, S. Reddy, M.S. Dharmaprakash, S. Chapi, B.S. Surendra, H.S. Bhojya Naik, B. Vinay Kumar, A. V. Raghu, Solar Photoactive Magnesium Substituted Copper Ferrite Photocatalysts for Rose Bengal Treatment, Results in Chemistry, 7, 101246 (2024); https://doi.org/10.1016/j.rechem.2023.101246.

H.-C. Lu, J.-E. Chang, P.-H. Shih, & L.-C. Chiang, Stabilization of copper sludge by high-temperature CuFe2O4 synthesis process. Journal of Hazardous Materials 150(3), 504 (2008); https://doi.org/10.1016/j.jhazmat.2007.04.130.

K.A. Hamzah, C.K. Yeoh, M.M. Noor, P.L. Teh, Y.Y. Aw, S.A. Sazali, W.M.A. Wan Ibrahim, Mechanical Properties and Thermal and Electrical Conductivity of 3D Printed ABS-Copper Ferrite Composites via 3D Printing Technique, Journal of Thermoplastic Composite Materials, 35(1), 3 (2019); https://doi.org/10.1177/0892705719869405.

J. C. Hoh, I. I. Yaacob, Polymer Matrix Templated Synthesis: Cobalt Ferrite Nanoparticles Preparation, Journal of Materials Research, 17(12), 3105 (2002); https://doi.org/10.1557/jmr.2002.0449.

J. Mazurenko, L. Kaykan, K. Bandura, O. Vyshnevskyi, M. Moiseienko, M. Kuzyshyn, N. Ostapovych, Analysis of the Structural, Morphological, and Elastic Properties of Nanosized CuFe₂O₄ Spinel Synthesized via Sol-Gel Self-Combustion Method, Physics and Chemistry of Solid State, 25(2), 380 (2024); https://doi.org/10.15330/pcss.25.2.380-390.

M. Salavati-Niasari, T. Mahmoudi, M. Sabet, S. M. Hosseinpour-Mashkani, F. Soofivand, F. Tavakoli, Synthesis and Characterization of Copper Ferrite Nanocrystals via Coprecipitation, Journal of Cluster Science, 23(4), 1003 (2012); https://doi.org/10.1007/s10876-012-0486-7.

U. Naresh, R. J. Kumar, K. C. B. Naidu, Hydrothermal Synthesis of Barium Copper Ferrite Nanoparticles: Nanofiber Formation, Optical, and Magnetic Properties, Materials Chemistry and Physics, 236, 121807 (2019); https://doi.org/10.1016/j.matchemphys.2019.121807.

T. Kongkaew, K. Sakurai, Low-Temperature Synthesis of Cubic Phase CuFe2O4 Powder, Chemistry Letters, 46(10), 1493 (2017); https://doi.org/10.1246/cl.170632.

J. Mazurenko, L. Kaykan, A. K. Sijo, M. Moiseienko, M. Kuzyshyn, N. Ostapovych, M. Moklyak, The Influence of Reaction Medium pH on the Structure, Optical, and Mechanical Properties of Nanosized Cu-Fe Ferrite Synthesized by the Sol-Gel Autocombustion Method, Journal of Nano Research, 81, 65 (2023); https://doi.org/10.4028/p-d2fqah.

A. Lagashetty, K. Devendra, M. Sandhyarani, J. Rajeshwari, G. Galeppa, K. H. Lakshmidevi, B. B. Hajara, V. Veena, R. K. Preeti, S. K. Ganiger, Microwave-Assisted Synthesis and Characterizations of Nanosized Copper Ferrite and Barium Titanate for Antimicrobial Applications, Current Chemistry Letters, 13(2), 425 (2024); https://doi.org/10.5267/j.ccl.2023.10.003.

N. Hamdi, W. Belam, Structural, Electrical and Magnetic Properties of Copper-Substituted Co0.8-xNi0.2 Ferrites Synthesized by Sol–Gel Autocombustion Process, Journal of Electronic Materials, 52(9), 5996 (2023); https://doi.org/10.1007/s11664-023-10519-2.

J. Mazurenko, L. Kaykan, J. M. Michalik, M. Sikora, E. Szostak, O. Vyshnevskyi, K. Bandura, L. Turovska, Enhanced Synthesis of Copper Ferrite Magnetic Nanoparticles via Polymer-Assisted Sol-Gel Autocombustion Method for Magnetic Hyperthermia Applications, Journal of Nano Research, 84, 95 (2024); https://doi.org/10.4028/p-JbV1lE

L. S. Kaykan, J.S. Kaykan, I.P. Yaremiy, O.M. Ugorchuk, B.Y. Deputat, M.O. Nykoliuk, Synthesis, Structure and Dielectric Properties of Magnesium-Substituted Lithium Ferrite, Journal of Nano- and Electronic Physics, 8(4(2)), 04066-1 (2016); https://doi.org/10.21272/jnep.8(4(2)).04066.

Q.G. Jia, S.H. Liang, Q.X. Wang, Preparation and Performance of CuFe2O4 and ZnFe2O4 Magnetic Nanocrystals, Materials Research Express, 8(12), 125012 (2021); https://doi.org/10.1088/2053-1591/ac40b6.

S. Gaffar, A. Kumar, J. Alam, U. Riaz, Efficient Visible Light–Induced Photocatalytic Degradation of Tetracycline Hydrochloride Using CuFe2O4 and PANI/CuFe2O4 Nanohybrids, Environmental Science and Pollution Research International, 30(50), 108878 (2023); https://doi.org/10.1007/s11356-023-29976-7.

J. Li, S. Liu, X. Xie, J. Huang, S. Wang, H. Fang, UV–Vis Photodetector Based on Electrospun MgFe2O4 Microfibers, Materials Letters, 370, 136886 (2024); https://doi.org/10.1016/j.matlet.2024.136886.

M. Zulqarnain, S.S. Ali, C.H. Wan, U. Hira, A. Hussain, G. Farid, Structural Modifications, Low Temperature Magnetic Behavior and Optoelectronic Trends in A-Site Substituted Spinel Ferrites, Materials Science & Engineering. B, Solid-State Materials for Advanced Technology, 298, 116829 (2023); https://doi.org/10.1016/j.mseb.2023.116829.

R.S. Shitole, V.K. Barote, S.B. Kadam, R.H. Kadam, Williamson-Hall Strain Analysis, Cation Distribution and Magnetic Interactions in Dy3+ Substituted Zinc-Chromium Ferrite, Journal of Magnetism and Magnetic Materials, 588, 171468 (2023); https://doi.org/10.1016/j.jmmm.2023.171468.

J. Mazurenko, L. Kaykan, A. Zywczak, V. Kotsyubynsky, K. Bandura, M. Moiseienko, A. Vytvytskyi, Study of Li-Al Ferrites by Nuclear Magnetic Resonance, UV-Spectroscopy, and Mossbauer Spectroscopy, Journal of Nano- and Electronic Physics, 15(2), 02020 (2023); https://doi.org/10.21272/jnep.15(2).02020.

P. Kumar, M.C. Mathpal, R. Dhyani, R.C. Srivastava, M.A. G. Soler, J. Maze, H. C. Swart, Optical Behavior of Ferrite Nanoparticles and Thin Films, in Ferrite Nanostructured Magnetic Materials, Elsevier, 557 (2023).

B.K. Ostafiychuk, L.S. Kaykan, J.S. Mazurenko, B.Y. Deputat, S.V. Koren, Effect of Substitution on the Mechanism of Conductivity of Ultra Dispersed Lithium-Iron Spinel, Substituted with Magnesium Ions, Journal of Nano- and Electronic Physics, 9(5), 05018-1 (2017); https://doi.org/10.21272/jnep.9(5).05018.

E.E. Ateia, A.T. Mohamed, Correlation Between the Physical Properties and the Novel Applications of Mg0.7Cu0.3Fe2O4 Nano-Ferrites, Journal of Materials Science: Materials in Electronics, 28(14), 10035 (2017); https://doi.org/10.1007/s10854-017-6762-4.

I. Khan, K. Saeed, I. Zekker, B. Zhang, A. H. Hendi, A. Ahmad, S. Ahmad, N. Zada, H. Ahmad, L. A. Shah, T. Shah, I. Khan, Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation, Water, 14(2), 242 (2022); https://doi.org/10.3390/w14020242.

S. Sonia, H. Kumari, S. Chahal, S. Devi, S. Kumar, S. Kumar, P. Kumar, A. Kumar, Spinel Ferrites/Metal Oxide Nanocomposites for Waste Water Treatment, Applied Physics. A, Materials Science & Processing, 129(2) (2023); https://doi.org/10.1007/s00339-022-06288-0.

M.V. Gerbaldo, S.G. Marchetti, S.M. Mendoza, V.R. Elias, S.N. Mendieta, M.E. Crivello, Photocatalytic Degradation of Sodium Diclofenac Using Spinel Ferrites: Kinetic Aspects, Topics in Catalysis, 65(13–16), 1419 (2022); https://doi.org/10.1007/s11244-022-01627-0.

M. Sundararajan, V. Sailaja, L. John Kennedy, J. Judith Vijaya, Photocatalytic Degradation of Rhodamine B Under Visible Light Using Nanostructured Zinc Doped Cobalt Ferrite: Kinetics and Mechanism, Ceramics International, 43(1), 540 (2017); https://doi.org/10.1016/j.ceramint.2016.09.191.

A. Nawaz, A. Khan, N. Ali, P. Mao, X. Gao, N. Ali, M. Bilal, H. Khan, Synthesis of Ternary-Based Visible Light Nano-Photocatalyst for Decontamination of Organic Dyes-Loaded Wastewater, Chemosphere, 289(133121), 133121 (2022); https://doi.org/10.1016/j.chemosphere.2021.133121.

U. Manhas, I. Qadir, A. K. Atri, S. Sharma, S. Singh, M. Sharma, P. Sharma, D. Singh, Effect of Sintering Temperature on Magnetic, Catalytic and Photocatalytic Properties of Cu-Co-Mn Ferrite Catalyst, Ceramics International (2024); https://doi.org/10.1016/j.ceramint.2024.09.028.

S. Patar, R. Mittal, A. Dutta, B. K. Bhuyan, L. J. Borthakur, Algae Derived N-Doped Mesoporous Carbon Nanoflakes Fabricated with Nickel Ferrite for Photocatalytic Removal of Congo Red and Rhodamine B Dyes, Surfaces and Interfaces, 51(104710), 104710 (2024); https://doi.org/10.1016/j.surfin.2024.104710.

T. Tatarchuk, A. Shyichuk, M. Naushad, N. Danyliuk, I. Lapchuk, Copper-Substituted Magnetite as a Fenton-Like Catalyst Boosted with Electromagnetic Heating, Journal of Water Process Engineering, 60(105170), 105170 (2024); https://doi.org/10.1016/j.jwpe.2024.105170.

Downloads

Published

2024-09-23

How to Cite

Mazurenko, J., Kaykan, L., Moklyak, V., Petryshyn, M., Mazurenko, O., & Leleko, S. (2024). Photocatalytic degradation of methylene blue in aqueous media using magnesium-substituted copper ferrite as a magnetic catalyst. Physics and Chemistry of Solid State, 25(3), 605–616. https://doi.org/10.15330/pcss.25.3.605-616

Issue

Section

Scientific articles (Physics)

Most read articles by the same author(s)