Синтез та електрохімічні властивості наноматеріалу LaMnO3
DOI:
https://doi.org/10.15330/pcss.21.2.219-226Ключові слова:
золь-гель метод, структура перовскиту, KOH електроліт, питома ємністьАнотація
В даній роботі було приготовлено перовскитний матеріал LaMnO3 за допомогою золь-гель методу за участі автогоріння. Згідно Х-променевого фазового аналізу встановлено, шо отриманий матеріал складається з однієї фази LaMnO3 (просторова група Pm-3m). Середній розмір ОКР досліджуваного матеріалу 24 нм. За наближенням, що частинки сферичної форми розрахований середній розмір частинки становить 40 - 60 нм. Питома площа поверхні матеріалу складає 42,1 м2/г. Здійснено елекрохімічні дослідження з використанням нанорозмірного порошку LaMnO3 у якості катодного матеріалу для електрохімічних конденсаторів. Досліджуваний матеріал LaMnO3 показав питому ємність 40 Ф/г при розряді джерела до 1В.
Посилання
W. Zhe, Y. Su, D. Wang, F. Li, J. Du, H. Cheng, Advanced Energy Materials 1(5), 917 (2011) (https://doi.org/10.1002/aenm.201100312)
2. R. Lisovsky, B. Ostafiychuk, I. Budzulyak, V. Kotsyubynsky, A. Boychuk, B. Rachiy, Acta Physica Polonica A 133(4) 876 (2018) (https://doi.org/10.12693/APhysPolA.133.876).
E. Arendt, A. Maione, A. Klisinska, O. Sanz, M. Montes, S. Suarez, J. Blanco, P. Ruiz, Applied Catalysis A: General 339(1), 1 (2008) (https://doi.org/10.1016/j.apcata.2008.01.016).
D. Munoz, N. M. Harrison, F. Illas, Physical Review B 69, 8 (2004) (https://doi.org/10.1103/PhysRevB.69.085115).
S. A. Veldhuis, P.P. Boix, N. Yantara , M. Li, T.C. Sum, N. Mathews, S.G. Mhaisalkar, Advansed Materials 28(32), 6804 (2016) ( https://doi.org/10.1002/adma.201600669).
T.O. Berestok, A.S. Opanasyuk, Lashkarev reading 2014: Young scientists Conference on semiconductor physics, ISP NAS of Ukraine, Kyiv, 128, (2014).
P.M. Wilde, T.J. Guther, R. Oesten, J. Garche, Journal of Electroanalytical Chemistry 461(1-2), 154 (1999) (https://doi.org/10.1016/S0022-0728(98)00179-X).
L. Hehe, X. Zhang, R. Ding, L. Qi, H. Wang, Electrochimica Acta 108, 497 (2013) (https://doi.org/10.1016/j.electacta.2013.07.066).
B. K. Ostafiychuk, M. I. Kolkovskyi,, B. I. Rachiy, P. I. Kolkovskyi, N. Y. Ivanichok, R. V. Ilnitsky, Physics and Chemistry of Solid State 21(1), 19 (2020) (https://doi.org/10.15330/pcss.21.1.19-34).
Y. Hu, J. Wang, Journal of Power Sources 286, 394 (2015) (https://doi.org/10.1016/j.jpowsour.2015.03.177).
H. Nan, X. Hu, H. Tian, Materials Science in Semiconductor Processing 94, 35 (2019) (https://doi.org/10.1016/j.mssp.2019.01.033).
J.T. Mefford, W.G. Hardin, S. Dai, K.P. Johnston, K.J. Stevenson, Nature Materials 13, 726 (2014) (https://doi.org/10.1038/nmat4000).
X. Wang, Q. Zhu, X. Wang, H. Zhang, J. Zhang, L. Wang, Journal of Alloys and Compounds 675, 195 (2016) (https://doi.org/10.1016/j.jallcom.2016.03.048).
K. Zhang, X. Han, Z. Hu, X. Zhang, Z. Tao, J. Chen, Chemical Society Reviews 44(3), 699 (2015) (https://doi.org/10.1039/C4CS00218K).
A. Mahata, P. Datta, R.N. Basu, Ceramics International 43(1), 433 (2017) (https://doi.org/10.1016/j.ceramint.2016.09.177).
Z.A. Elsiddig, H. Xu, D. Wang, W. Zhang, X. Guo, Y. Zhang, Zh. Sun, J. Chen, Electrochimica Acta 253, 422 (2017) (https://doi.org/10.1016/j.electacta.2017.09.076).
K.C. Tsay, L. Zhang, J. Zhang, Electrochimica Acta 60, 428 (2012) (https://doi.org/10.1016/j.electacta.2011.11.087).
B.K. Ostafiychuk, I.M. Budzulyak, B.I. Rachiy, R.P.Lisovsky, V.I. Mandzyuk, P.I. Kolkovsky, R.I. Merena, M.V. Berkeshchuk, L.V. Golovko, Journal of Nano- and Electronic Physics 9(5), 05001 (2017) (https://doi.org/10.21272/jnep.9(5).05001).
Y. Cao, B. Lin, Y. Sun, H. Yang, X. Zhang, Electrochimica Acta 174, 41 (2015) (https://doi.org/10.1016/j.electacta.2015.05.131).
Y. Li, L. Xue, L. Fan, Y. Yan, Journal of Alloys and Compounds 478 (1-2), 493 (2009) (https://doi.org/10.1016/j.jallcom.2008.11.068).
M.W. Xu, L.B. Kong, W.J. Zhou, H.L. Li, Journal of Physical Chemistry C 111(51), 19141 (2007) (https://doi.org/10.1021/jp076730b).