Газове та електрохімічне гідрування сплавів R1-xR’xMgNi4-yCoy (R, R’ = Y, La, Ce)

Автор(и)

  • Ю. В. Вербовицький Фізико-механічний інститут НАН України
  • І. Ю. Завалій Фізико-механічний інститут ім. Г.В. Карпенка НАН України
  • В. В. Березовець Фізико-механічний інститут ім. Г.В. Карпенка НАН України
  • П. Я. Лютий Фізико-механічний інститут ім. Г.В. Карпенка НАН України

DOI:

https://doi.org/10.15330/pcss.21.3.503-509

Ключові слова:

Рідкісноземельні сполуки, сполуки магнію, кристалічна структура, гідрування сплавів, металогідридні електроди

Анотація

Нові сплави R1-xR’xMgNi4-yCoy (R, R’ = Y, La, Ce; x = 0.5; y = 0, 1, 2) синтезували методом порошкового спікання, для яких досліджено кристалічну структуру та воденьсорбційні властивості. Рентгенівським дифракційним методом порошку визначено кристалічну структуру фаз R1-xR’xMgNi4-yCoy (структурний тип MgCu4Sn). Синтезовані сплави поглинають водень при кімнатній температурі та тиску водню 0,1-10 бар. Для деяких досліджуваних сполук виявлено утворення гідридів з кубічною та орторомбічною структурами. Найбільший вміст водню виявлено для сполук, в яких половина нікелю заміщена на кобальт: La0.5Y0.5MgNi2Co2H5.18 та La0.5Ce0.5MgNi2Co2H6.48. Електрохімічні дослідження показали, що електродні матеріали з ітрієм мають кращу електрохімічну ємність порівняно зі сплавами, які леговані церієм. Найвищу розрядну ємність 292 мАгод/г спостерігали для La0.5Y0.5MgNi3Co, однак найкращу циклічну стабільність після 50-го циклу (92%) виявили для La0.5Y0.5MgNi2Co2. Отримані електрохімічні параметри порівнювали з такими для споріднених сполук. Високошвидкісна розрядна здатність сплавів, що містили лише нікель, була вдвічі більшою при I = 1 А / г від такої для легованих кобальтом матеріалів.

Посилання

T. Kohno, H. Yoshida, F. Kawashima, T. Inaba, I. Sakai, M. Yamamoto, M. Kanda, J. Alloys Compd. 311, 5 (2000) (https://doi.org/10.1016/S0925-8388(00)01119-1).

B. Liao, Y.Q. Lei, L.X. Chen, G.L. Lu, H.G. Pan, Q.D. Wang, Electrochimica Acta 50, 1057 (2004) (https://doi.org/10.1016/j.electacta.2004.08.004).

Y. Liu, Y. Cao, L. Huang, M. Gao, H. Pan, J. Alloys Compd. 509(3), 675 (2011) (https://doi.org/10.1016/j.jallcom.2010.08.157).

Yu.V. Verbovytskyy, I.Yu. Zavaliy, Materials science 51(4), 443 (2016) (https://doi.org/10.1007/s11003-016-9861-0).

Yu.V. Verbovytskyy, I.Yu. Zavaliy, Materials science 52(6), 747 (2017) (https://doi.org/10.1007/s11003-017-0018-6).

L. Guéneé, V. Favre-Nicolin, K. Yvon, J. Alloys Compd. 348, 129 (2003) (https://doi.org/10.1016/S0925-8388(02)00797-1).

Z.M. Wang, H.Y. Zhou, Z.F. Gu, G. Cheng, A.B. Yu, J. Alloys Compd. 377, L7 (2004) (https://doi.org/10.1016/j.jallcom.2004.01.048).

Z.M. Wang, H.Y. Zhou, G. Cheng, Z.F. Gu, A.B. Yu, J. Alloys Compd. 384, 279 (2004) (https://doi.org/10.1016/j.jallcom.2004.04.087).

S. Zhang, H. Zhou, Z. Wang, R.P. Zou, H. Xu, J. Alloys Compd. 398, 269 (2005) (https://doi.org/10.1016/j.jallcom.2005.02.015).

Z.M. Wang, H. Zhou, R.P. Zou, Q. Yao, J. Alloys Compd. 429, 260 (2007) (https://doi.org/10.1016/j.jallcom.2006.03.094).

J. Chotard, D. Sheptyakov, K. Yvon, Z. Kristallogr. 223, 690 (2008) (https://doi.org/10.1524/zkri.2008.1124).

N. Terashita, K. Sakaki, S. Tsunokake, Y. Nakamura, E. Akiba, Mat. Trans. 53, 513 (2012) (https://doi.org/10.2320/matertrans.M2011334).

K. Sakaki, N. Terashita, S. Tsunokake, Y. Nakamura, E. Akiba, J. Phys. Chem. C. 116, 19156 (2012) (https://doi.org/10.1021/jp3052856).

K. Sakaki, N. Terashita, S. Tsunokake, Y. Nakamura, E. Akiba, J. Phys. Chem. C. 116, 1401 (2012) (https://doi.org/10.1021/jp206446c).

J. Tan, X. Zeng, J. Zou, X. Wu, W. Ding, Trans. Nonferrous Met. Soc. China. 23, 2307 (2013) (https://doi.org/10.1016/S1003-6326(13)62733-8).

T. Yang, T. Zhai, Z. Yuan, W. Bu, S. Xu, Y. Zhang, J. Alloys Compd. 617, 29 (2014) (https://doi.org/10.1016/j.jallcom.2014.07.206).

T. Zhai, T. Yang, Z. Yuan, Y. Zhang, Int. J. Hy-drogen Energy 39, 14282 (2014) (https://doi.org/10.1016/j.ijhydene.2014.03.039).

Q. Zhang, Z. Chen, Y. Li, F. Fang, D. Sun, L. Ouyang, M. Zhu, J. Phys. Chem. C. 119, 4719 (2015) (https://doi.org/10.1021/acs.jpcc.5b00279).

V.V. Shtender, R.V. Denys, V. Paul-Boncour, A.B. Riabov, I.Yu. Zavaliy, J. Alloys Compd. 603, 7 (2014) (https://doi.org/10.1016/j.jallcom.2014.03.030).

Yu.V. Verbovytskyy, V.V. Shtender, P.Ya. Lyutyy, I.Yu. Zavaliy, Powder Met. Met. Ceramics 55(10-11), 559 (2017) (https://doi.org/10.1007/s11106-017-9839-y).

V.V. Shtender, R.V. Denys, V. Paul-Boncour, Yu.V. Verbovytskyy, I.Yu. Zavaliy, J. Alloys Compd. 639, 526 (2015) (https://doi.org/10.1016/j.jallcom.2015.03.187).

Yu.V. Verbovytskyy, V.V. Shtender, A. Hackemer, H. Drulis, I.Yu. Zavaliy, P.Ya. Lyutyy, J. Alloys Compd. 741, 307 (2018) 307−314 (https://doi.org/10.1016/j.jallcom.2018.01.067).

V.O. Oprysk, Yu.V. Verbovytskyy, V.V. Shtender, P.Ya. Lyutyy, I.Yu. Zavaliy, Solid State Sci. 84, 112 (2018) (https://doi.org/10.1016/j.solidstatesciences.2018.08.009).

J. Rodriguez-Carvajal, T. Roisnel (International Union for Crystallography, 1998).

P. Villars, K. Cenzual (ASM International, Materials Park, OH, 2014).

##submission.downloads##

Опубліковано

2020-09-30

Як цитувати

Вербовицький, Ю. В., Завалій, І. Ю., Березовець, В. В., & Лютий, П. Я. (2020). Газове та електрохімічне гідрування сплавів R1-xR’xMgNi4-yCoy (R, R’ = Y, La, Ce). Фізика і хімія твердого тіла, 21(3), 503–509. https://doi.org/10.15330/pcss.21.3.503-509

Номер

Розділ

Наукові статті