Електронні, фононні, оптичні та термодинамічні властивості кристалу CdTe розраховані методом функціонала густини
DOI:
https://doi.org/10.15330/pcss.23.2.261-269Ключові слова:
теорія функціонала густини, зонні структури, оптичні функції, термодинамічні властивостіАнотація
Представлено результати теоретичного розрахунку електронного та фононного енергетичного спектру, оптичних і термодинамічних властивостей кристалів CdTe. Дисперсія електронного та фононного енергетичного спектру у високо симетричних точках зони Брілюєна, електронна та фононна щільність станів, температурна поведінка спектрів комбінаційного розсіювання, питомої теплоємності, вільної енергії, ентропії, ентальпії і температури Дебая розрахована в межах наближення узагальненого градієнта апроксимації з використанням функціоналу Пердью–Берк–Ернцергоф. Для аналізу оптичних функцій використано комплексну діелектричну функцію. Розраховані параметри добре корелюють із відомими експериментальними результатами.
Посилання
N.N. Kolesnikov, V.V. Kveder, E.B. Borisenko, D.N. Borisenko, B.A. Gnesin, R.B. James, Journal of Crystal Growth. 285(3), 339 (2005); https://doi.org/10.1016/j.jcrysgro.2005.08.027.
S.W. Biernacki, U. Scherz, Ch. Schrepel, Phys. Rev. B. 56, 4592 (1997); https://doi.org/10.1103/PhysRevB.56.4592.
Z.R. Khan, M. Zulfequar, M.S. Khan, Structural, optical, photoluminescence, dielectric and electrical studies of vacuum-evaporated CdTe thin films, Bull. Mater. Sci. 35, 169 (2012); https://doi.org/10.1007/s12034-012-0274-x.
K.P. O’Donnell, P.G. Middleton, Bandgaps of widegap II-VIs, temperature dependence, in: R. Bhargara (Eds.), Properties of Wide Bandgap II-VI Semiconductors (London, U.K.: INSPEC, Institute of Electrical Engineers, 1997).
B. Bylsma, P.M. Bridenbaugh, D.H. Olson, A.M. Glass, Photorefractive properties of doped cadmium telluride, Appl. Phys. Lett. 51, 889 (1987); https://doi.org/10.1063/1.98845.
A. Munshi, J. Kephart, A. Abbas, J. Raguse, J.-N. Beaudry, K. Barth, J. Sites, J. Walls, W. Sampath, Polycrystalline CdSeTe/CdTe Absorber Cells With 28 mA/cm2 Short-Circuit Current, IEEE Journal of Photovoltaics 8(1), 310 (2018); https://doi.org/10.1109/JPHOTOV.2017.2775139.
M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Solar cell efficiency tables (version 57), Prog. Photovolt. Res. Appl. 29(1), 3 (2018); https://doi.org/10.1002/pip.3371.
T.C.M. Santhosh, K.V. Bangera, G.K. Shivakumar, Synthesis and band gap tuning in CdSe(1-x)Te(x) thin films for solar cell applications, Solar Energy 153, 343 (2017); https://doi.org/10.1016/j.solener.2017.05.079.
X. Zheng, D. Kuciauskas, J. Moseley, E. Colegrove, D.S. Albin, H. Moutinho, J.N. Duenow, T. Ablekim, S.P. Harvey, A. Ferguson, W.K. Metzger, Recombination and bandgap engineering in CdSeTe/CdTe solar cells, APL Materials 7, 071112 (2019); https://doi.org/10.1063/1.5098459.
H.B. Barber, Applications of semiconductor detectors to nuclear medicine, Nucl. Instrum. Methods Phys. Res. A. 436(1-2), 102 (1999); https://doi.org/10.1016/S0168-9002(99)00605-1.
B.G. Valmik, M.P. Deshpande, S.V. Bhatt, V. Sathe, H.R. Bhoi, P. Rajput, S.H.Chaki, Investigation and fabrication of Cadmium Telluride (CdTe) single crystal as a photodetector, Physica B: Condensed Matter. 614, 413027 (2021); https://doi.org/10.1016/j.physb.2021.413027.
J. Mani, N. Rajeev Kumar, R. Radhakrishnan, G. Anbalagan, Thermoelectric properties of CdTe materials: DFT study, AIP Conference Proceedings 2265, 030390 (2020); https://doi.org/10.1063/5.0016968.
A. Winkler, H. Koivunoro, V. Reijonen, I. Auterinen, S. Savolainen, Prompt gamma and neutron detection in BNCT utilizing a CdTe detector, Appl. Radiat. Isot. 106, 139 (2015); https://doi.org/10.1016/j.apradiso.2015.07.040.
A. Gädda, J. Ott, A. Karadzhinova-Ferrer, M. Golovleva, M. Kalliokoski, A. Winklera, P. Luukka, J. Härkönen, Cadmium Telluride X-ray pad detectors with different passivation dielectrics, Nucl. Instrum. Methods Phys. Res. A 924, 33 (2019); https://doi.org/10.1016/j.nima.2018.08.063.
W. Shockley, H.J. Queisser, Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells, J. Appl. Phys. 32, 510 (1961); https://doi.org/10.1063/1.1736034.
M. Gloeckler, I. Sankin, Z. Zhao, CdTe Solar Cells at the Threshold to 20% Efficiency, IEEE J. Photovolt. 3(4), 1389 (2013); https://doi.org/10.1109/JPHOTOV.2013.2278661.
K. Shen, Q. Li, D. Wang, R. Yang, Y. Deng, M.-J. Jeng, D. Wang, CdTe solar cell performance under low-intensity light irradiance, Sol. Energy Mater. Sol. Cells. 144, 472 (2016); https://doi.org/10.1016/j.solmat.2015.09.043.
L. Nykyrui, Y. Saliy, R. Yavorskyi, Y. Yavorskyi, V. Schenderovsky, G. Wisz, & S. Górny, CdTe vapor phase condensates on (100) Si and glass for solar cells. In 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP) (IEEE 2017). P. 01PCSI26; https://doi.org/10.1109/NAP.2017.8190161.
L.I. Nykyruy, R.S. Yavorskyi, Z.R. Zapukhlyak, G. Wisz, P.Potera, Evaluation of CdS/CdTe thin film solar cells: SCAPS thickness simulation and analysis of optical properties, Optical Materials 92, 319 (2019); https://doi.org/10.1016/j.optmat.2019.04.029.
N. Benkhettou, D. Rached, B. Souidini, M. Driz, High-pressure stability and structural properties of CdS and CdSe, Phys. Status Solidi B 241, 101 (2004); https://doi.org/10.1002/pssb.200301907.
E. Deligoz, K. Colakoglu, Y. Ciftei, Elastic, electronic, and lattice dynamical properties of CdS, CdSe, and CdTe, Physica B 373, 124 (2006); https://doi.org/10.1016/j.physb.2005.11.099.
H.A. Ilchuk, R.Yu. Petrus, A.I. Kashuba, I.V. Semkiv, and Eh.O. Zmiiovska, Optical-Energy Properties of the Bulk and Thin-Film Cadmium Telluride (CdTe), Nanosistemi, Nanomateriali, Nanotehnologii 16(3), 519 (2018); https://doi.org/10.15407/nnn.16.03.519.
R. Wright, J. Gale, Interatomic potentials for the simulation of the zinc-blende and wurtzite forms of ZnS and CdS: Bulk structure, properties, and phase stability, Phys. Rev. B 70, 035211 (2004); https://doi.org/10.1103/PhysRevB.70.035211.
A. Mujica, A. Rubio, A. Munoz, R.J. Needs, High-pressure phases of group-IV, III–V, and II–VI compounds, Rev. Mod. Phys. 75, 863 (2003); https://doi.org/10.1103/RevModPhys.75.863.
H.A. Ilchuk, A.I. Kashuba, R.Yu. Petrus, I.V. Semkiv, N.A. Ukrainets, Simulation the spectral dependence of the transmittance for semiconductor thin films, Physics and Chemistry of Solid State 21(1), 57 (2020); https://doi.org/10.15330/pcss.21.1.57-60.
R. Petrus, H. Ilchuk, A. Kashuba, I. Semkiv, E. Zmiiovska, Optical properties of CdTe thin films obtained by the method of high-frequency magnetron sputtering, Funct. Mater. 27(2), 342 (2020); https://doi.org/10.15407/fm27.02.342.
Y. Wu, G. Chen, Y. Zhu, W.-J. Yin, Y. Yan, M. Al-Jassim, S.J. Pennycook, LDA+U/GGA+U calculations of structural and electronic properties of CdTe: Dependence on the effective U parameter, Computational Materials Science 98, 18 (2015); https://doi.org/10.1016/j.commatsci.2014.10.051.
S.A. Pochareddy, A.P. Nicholson, A. Thiyagarajan, A. Shah, W.S. Sampath, Structural and Electronic Calculations of CdTe Using DFT: Exchange–Correlation Functionals and DFT-1/2 Corrections, Journal of Electronic Materials 50, 2216 (2021); https://doi.org/10.1007/s11664-020-08720-8.
E.V. Shah, D.R. Roy, A comparative DFT study on electronic, thermodynamic and optical properties of telluride compounds, Computational Materials Science 88, 156 (2014); https://doi.org/10.1016/j.commatsci.2014.03.013.
D. Liu, J. Feng, M. Tian, Q. Li, R. Sa, First-principles study of the stability, electronic and optical properties of CdTe under hydrostatic pressure, Chemical Physics Letters 764, 138272 (2021); https://doi.org/10.1016/j.cplett.2020.138272.
H.S. Güder, S. Gilliland, J.A. Sans, A. Segura, J. González, I. Mora, V. Muñoz, A. Muñoz, Electronic structure and optical properties of CdTe rock-salt high pressure phase, Phys. stat. sol. (b) 235(2), 509 (2003); https://doi.org/10.1002/pssb.200301612.
J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 78(7), 1396 (1997); https://doi.org/10.1103/PhysRevLett.78.1396.
H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B., 13(12), 5188 (1976); https://doi.org/10.1103/PhysRevB.13.5188.
W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. A 140(4), 1133 (1965); https://doi.org/10.1103/PhysRev.140.A1133.
P.A. Shchepanskyi, O.S. Kushnir, V.Yo. Stadnyk, A.O. Fedorchuk, M.Ya. Rudysh, R.S. Brezvin, P.Yu. Demchenko and A.S. Krymus, Structure and optical anisotropy of K1.75(NH4)0.25SO4 solid solution, Ukr. J. Phys. Opt. 18(4), 187 (2017); https://doi.org/10.3116/16091833/18/4/187/2017.
M.Ya. Rudysh, P.A. Shchepanskyi, A.O. Fedorchuk, M.G. Brik, C.-G. Ma, G.L. Myronchuk, and M. Piasecki, First-principles analysis of physical properties anisotropy for the Ag2SiS3 chalcogenide semiconductor, Journal of Alloys and Compounds 826(15), 154232 (2020); https://doi.org/10.1016/j.jallcom.2020.154232.
B. Naidych, T. Parashchuk, I. Yaremiy, M. Moyseyenko, O. Kostyuk, O. Voznyak, Z. Dashevsky, and L. Nykyruy, Structural and thermodynamic properties of Pb-Cd-Te thin films: Experimental study and DFT analysis, Journal of Electronic Materials 50(2), 580-591 (2021); https://doi.org/10.1007/s11664-020-08561-5.
O. Madelung, M. Schlz, H. Weiss (Eds.), Numerical Data and Functional Relationships in Science and Technology, Landolt-Borstein, 17 (Springer, Berlin, 1982).
A.J. Strauss, The physical properties of cadmium telluride, Revue de Physique Appliquée, Société française de physique/EDP 12(2), 167 (1977); https://doi.org/10.1051/rphysap:01977001202016700.
S. Pershyna, A. Kashuba, I. Semkiv, Ya. Storozhuk, H. Ilchuk, R. Petrus, Deposition and optical characterization of the cadmium telluride thin films, Visnyk of the Lviv University. Series Physics 58, 3 (2021); https://doi.org/10.30970/vph.58.2021.3.
D.T.F. Marple, Refractive Index of ZnSe, ZnTe, and CdTe, J. Appl. Phys. 35, 539 (1964); https://doi.org/10.1063/1.1713411.
F.B. Baghsiyahi, A. Akhtar and M. Yeganeh, Ab initio study of thermodynamic properties of bulk zinc-blende CdS: Comparing the LDA and GGA, International Journal of Modern Physics B 32, 1850207 (2018); https://doi.org/10.1142/S0217979218502077.