Теоретичні дослідження термічних, механічних та ультразвукових властивостей металевого цирконію під тиском
DOI:
https://doi.org/10.15330/pcss.24.3.549-557Ключові слова:
ультразвукові властивості, пружні константи, термо-фізичні характеристики, теплопровідністьАнотація
Цирконій (Zr), метал hcp структури, досліджено передачею акустичних хвиль при робочому тиску від 0 до 25 ГПа. Для цього використано підхід потенціалу взаємодії Леннарда-Джонса для оцінки коефіцієнтів пружності вищого порядку (SOEC і TOEC). Ця модель використовується для розрахунку пружних параметрів 2-ий та 3-ій порядки для металевого цирконію. За допомогою SOEC були розраховані інші модулі пружності, такі як об’ємний модуль (B), модуль Юнга (Y) і модуль зсуву (G) для Zr із використанням наближень Фойгта-Ройсса-Хілла (VRH). Потім, застосовуючи SOECs, а також щільність цирконію в тому самому діапазоні тиску, було вивчено три залежні від орієнтації швидкості звуку, що містять середні швидкості Дебая. Основні теплові характеристики, такі як питома теплоємність при постійному об’ємі, граткова теплопровідність, густина теплової енергії, час теплової релаксації, а також коефіцієнти акустичного зв’язку металевого цирконію розраховано в тих самих ж діапазонах тиску. Розрахунок є задовільним для оцінки коефіцієнтів ослаблення ультразвуку, що виникає внаслідок взаємодії фононів, твердості, а також температури плавлення під різними тисками.
Посилання
J.C. Jamieson, Crystal Structures of Titanium, Zirconium, and Hafnium at High Pressures, Science 140, 72 (1963); https://doi.org/10.1126/science.140.3562.72.
A. Jayaraman, W. Klement, G.C. Kennedy, Solid-Solid Transitions in Titanium and Zirconium at High Pressures, Phys. Rev. 131, 644 (1963); https://doi.org/10.1103/PhysRev.131.644.
M.P. Usikov, V. Zilbersh, The orientation relationship between the α- and ω-phases of titanium and zirconium, Phys. Status Solidi A 19, 53 (1973); https://doi.org/10.1002/pssa.2210190103.
A. Rabinkin, M. Talianker, O. Botstein, Crystallography and a model of the α → ω phase transformation in zirconium, Acta Metall. Mater 29, 691 (1981); https://doi.org/10.1016/0001-6160 (81)90152-8.
B. Stauder, C. Frantz, Mise en evidence d'une phase omega dans des films minces de zirconium et zirconium-oxygene realises par pulverisation cathodique magnetron, Scripta Metall. Mater 25, 2127 (1991); https://doi.org/10.1016/0956-716X(91)90286-A.
A.V. Dobromyslov, N.V. Kazantseva, Formation of metastable ω-phase in Zr-Fe, Zr-Co, Zr-Ni, and Zr-Cu alloys, Scripta Materialia 37, 615 (1997); https://doi.org/10.1016/S1359-6462(97)00168-1
Y.K. Vohra, Kinetics of phase transformations in Ti, Zr and Hf under static and dynamic pressures, Journal of Nuclear Materials 75, 288 (1978); https://doi.org/10.1016/0022-3115 (78)90010-7.
S.A. Catledge, P.T. Spencer, Y. K. Vohra, Nanoindentation hardness and atomic force microscope imaging studies of pressure-quenched zirconium metal, Applied Physics Letters 77, 3568 (2000); https://doi.org/10.1063/1.1329632.
Y. Zhao, J. Zhang, Enhancement of yield strength in zirconium metal through high-pressure induced structural phase transition, Applied Physics Letters 91, 201907 (2007); https://doi.org/10.1063/1.2802726.
R. Ahuja, L. Dubrovinsky, N. Dubrovinskaia, J. M. Osorio, M. Mattesini, B. Johansson, T. Le Bihan, Titanium metal at high pressure: Synchrotron experiments and ab initio calculations, Phys. Rev. B 69, 184102 (2004); https://doi.org/10.1103/PhysRevB.69.184102.
E. Cerreta, G. T. Gray, R. S. Hixson, P. A. Rigg, D. W. Brown, The influence of interstitial oxygen and peak pressure on the shock loading behavior of zirconium, Acta Materialia 53, 1751 (2005); https://doi.org/10.1016/j.actamat.2004.12.024
G. Jyoti, S.C. Gupta, Theoretical analysis of the isostructural transition in Zr at 53 GPa, Journal of Physics: Condensed Matter 6, 10273 (1994); https://doi.org/10.1088/0953-8984/6/47/010.
D.K. Pandey, P.K. Yadawa, R.R. Yadav, Ultrasonic properties of hexagonal ZnS at nanoscale, Mater. Lett. 61, 5194 (2007); https://doi.org/10.1016/j.matlet.2007.04.028.
P.K. Yadawa, Computational Study of Ultrasonic Parameters of Hexagonal Close-Packed Transition Metals Fe, Co, and Ni, Arabian Journal for Science and Engineering 37, 255 (2012); https://doi.org/10.1007/s13369-011-0153-6.
A. K. Prajapati, S. Rai, Kuldeep, P.K. Yadawa, Pressure dependent elastic, mechanical and ultrasonic properties of ZnO nanotube, Indian Journal of Pure & Applied Physics 61, 115 (2023); https://doi.org/ 10.56042/ijpap.v61i2.64116.
V. Rajendran, A. Marikani, Material Science, Tata McGraw Hill Publisher, 2, 29(2009).
S.O. Pillai, Solid State Physics: Crystal Physics (New Age International Publisher, London, 2005).
A.K. Prajapati, S. Rai, P.K. Yadawa, Pressure-Dependent Elastic, Mechanical, Thermo-Physical and Ultrasonic Properties of Titanium Diboride, MAPAN- JMSI 37, 597 (2022); https://doi.org/10.1007/s12647-022-00590-1.
D. Singh, D.K. Panday, P.K. Yadawa, A.K. Yadav, Attenuation of ultrasonic waves in V, Nb and Ta at low temperatures, Cryogen 49, 12 (2009); https://doi.org/10.1016/j.cryogenics.2008.08.008.
P.K. Yadawa, D. Singh, D.K. Panday, R.R. Yadav, Elastic and Acoustic Properties of Heavy Rare-Earth Metals, The Open Acoustics Journal 2, 61 (2009); http://doi.org/10.2174/1874837600902010061.
R. Hill, The Elastic Behaviour of a Crystalline Aggregate, Proc. Phys. Soc. A 65, 349 (1952); http://doi.org/10.1088/0370-1298/65/5/307.
N. Turkdal, E. Deligoz, H. Ozisik and H.B. Ozisik, First-principles studies of the structural, elastic, and lattice dynamical properties of ZrMo2 and HfMo2, Ph. Transit. 90, 598 (2017); https://doi.org/10.1080/01411594.2016.1252979.
P.F. Weck, E. Kim, V. Tikare, J.A. Mitchell, Mechanical properties of zirconium alloys and zirconium hydrides predicted from density functional perturbation theory, Dalton Trans. 44, 18769 (2015); https://doi.org/10.1039/C5DT03403E.
T. Morelli Donald and A. Slack Glen, High lattice thermal conductivity solids in high thermal conductivity of materials in S. L. Shinde (Springer Publisher, 2006).
M.E. Fine, L.D. Brown, H.L. Marcus, Elastic constants versus melting temperature in metals, Scripta Metallurgica 18, 951 (1984); https://doi.org/10.1016/0036-9748 (84)90267-9.
X. Yang, S. Zhang, H. Zhu, P. Tao, L. Huang, M. Li, W. Zhang, Y. Li, C. Zhou, and Y. Zou, Structural Stability, Thermodynamic and Elastic Properties of Cubic Zr0.5Nb0.5 Alloy under High Pressure and High Temperature, Crystals 12, 631 (2022); https://doi.org/10.3390/cryst12050631.
S. Rai, N. Chaurasiya, P.K. Yadawa, Elastic, Mechanical and Thermophysical properties of Single-Phase Quaternary ScTiZrHf High-Entropy Alloy, Physics and Chemistry of Solid State 22, 687 (2021); http://doi.org/10.15330/pcss.22.4.687-696.
X.K. Liu, W. Zhou, X. Liu, S.M. Peng, First-principles investigation of the structural and elastic properties of Be12Ti under high pressure, RSC Adv. 5, 59654 (2015); https://doi.org//10.1039/C5RA11249D.
A.L. Ivanovskii, Hardness of hexagonal AlB2-like diborides of s, p and d metals from semi-empirical estimations, Int. J. Refract. Met. Hard Mater 36, 183 (2013); https://doi.org/10.1016/j.ijrmhm.2012.08.013.
A. Guechi, A. Merabet, M. Chegaar, A. Bouhemadou, N. Guechi, Pressure effect on the structural, elastic, electronic and optical properties of the Zintl phase KAsSn, first principles study, J. Alloys Compd. 623, 219 (2015); https://doi.org/10.1016/j.jallcom.2014.10.114.
S.I. Ranganathan, M. Ostoja-Starzewski, Universal Elastic Anisotropy Index, Phys. Rev. Lett. 101, 9007 (2008); https://doi.org/10.1103/PhysRevLett.101.055504.
K.B. Panda, K.S. Ravi Chandran, Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory, Comput. Mater. Sci. 35, 134 (2006); https://doi.org/10.1103/PhysRevLett.101.055504.
S.P. Singh, G. Singh, A.K. Verma, P.K. Yadawa, R.R. Yadav, Ultrasonic wave propagation in thermoelectric ZrX2(X=S,Se) compounds, Pramana-J. Phys. 93, 83 (2019); https://doi.org/10.1007/s12043-019-1846-8.
A.K. Jaiswal, P.K. Yadawa, R.R. Yadav, Ultrasonic wave propagation in ternary intermetallic CeCuGe compound, Ultrasonics 89, 22 (2018); https://doi.org/10.1016/j.ultras.2018.04.009.