Виробництво сплавів на основі нітинолу на основі сучасних технологій: Огляд

Автор(и)

  • Ч.А. Імамалізаде Азербайджанський державний університет нафти і промисловості, Баку, Азербайджан

DOI:

https://doi.org/10.15330/pcss.24.2.341-347

Ключові слова:

сплави з пам'яттю форми, нітінол та сплави на його основі, машинне навчання, мікроструктура, термомеханічна поведінка

Анотація

У статті подано короткий огляд літературних даних щодо синтезу, переробки, структури, механічних властивостей і практичного застосування нітинолу та сплавів на його основі, які є перспективними функціональними матеріалами та знайшли застосування в ряді високих технологій. Крім того, для прогнозування температур фазових перетворень застосовано метод машинного навчання.

Посилання

Shape Memory Alloy Engineering For Aerospace, Structural, and Biomedical Applications. 2d Edition. Ed.: A.Concilio, V.Antonucci, F.Auricchio, L.Lecce, E. Sacco, 934 (2021).

A. Wadood, Brief Overview on Nitinol as Biomaterial, Advances in Materials Science and Engineering., 4173138 (2016); https://doi.org/10.1155/2016/4173138.

J.J. Mohd, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials & Design, 56, 1078 (2014); https://doi.org/10.1016/j.matdes.2013.11.084.

D. Kapoor. Nitinol for Medical Applications: A Brief Introduction to the Properties and Processing of Nickel Titanium Shape Memory Alloys and their Use in Stents, Johnson Matthey Technology Review, 61(1), 66 (2017); http://dx.doi.org/10.1595/205651317X694524.

T. Ikeda, The use of shape memory alloys (SMAs) in aerospace engineering. Shape Memory and Superelastic Alloys, Applications and Technologies. Woodhead Publishing Series in Metals and Surface Engineering, 125, (2011); https://doi.org/10.1533/9780857092625.2.125.

M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri, Manufacturing and processing of NiTi implants: A reviews, Progress in Materials Science. Sci., 57(5), 911 (2012); https://doi.org/10.1016/j.pmatsci.2011.11.001.

W.J. Song, S.G. Choi, E.-S. Lee, Prediction and Comparison of Electrochemical Machining on Shape Memory Alloy(SMA) using Deep Neural Network(DNN), Journal of Electrochemical Science and Technology, 10(3), 276 (2019); https://doi.org/10.33961/jecst.2019.03174.

A.W. Young, R.W. Wheeler, N.A. Ley, O. Benafan, M.L.Young, Microstructural and Thermomechanical Comparison of Ni-Rich and Ni-Lean NiTi-20 at.% Hf High Temperature Shape Memory Alloy Wires, Shape Memory and Superelasticity, 5, 397 (2019); https://doi.org/10.1007/s40830-019-00255-0.

D.E. Nicholson, O. Benafan, S.A. Padula, B.Clausen, R.Vaidynathan, Loading Path and Control Mode Effects During Thermomechanical Cycling of Polycrystalline Shape Memory NiTi, Shape Memory and Superelasticity, 4, 143 (2018); https://doi.org/10.1007/s40830-017-0136-x.

O. Benafan, R.D. Noebe, S.A. Padula, D.J. Gaydosh, B.A. Lerch, A.Garg, R. Vaidyanathan, Temperature-dependent behavior of a polycrystalline NiTi shape memory alloy around the transformation regime, Scripta Materialia., 68(8), 571 (2013); https://doi.org/10.1016/j.scriptamat.2012.11.042.

S. Manchiraju, D. Gaydosh, O. Benafan, R. Noebe, R. Vaidyanathan, Thermal cycling and isothermal deformation response of polycrystalline NiTi: Simulations vs. experiment, Acta Materialia, 59 (13), 5238 (2011); https://doi.org/10.1016/j.actamat.2011.04.063.

O. Benafan, A. Garg, R.D. Noebe, H.D. Skorpenske, K. An, N. Schell, Deformation characteristics of the intermetallic alloy 60NiTi, Intermetallics, 82, 40 (2017); https://doi.org/10.1016/j.intermet.2016.11.003.

K. Safaei, M. Nematollahi, P. Bayati, H. Dabbaghi, O. Benafan, M. Elahinia, Torsional behavior and microstructure characterization of additively manufactured NiTi shape memory alloy tubes, Engineering Structures, 226, 111383 (2021); https://doi.org/10.1016/j.engstruct.2020.111383.

M. Nematollahi, G. Toker, S.E. Saghaian, J. Salazar, M. Mahtabi, O. Benafan, Additive manufacturing of Ni-rich nitihf 20: Manufacturability, composition, density, and transformation behavior, Shape Memory and Superelasticity, 5 (1), 113-124 (2019); https://doi.org/10.1007/s40830-019-00214-9.

M. Elahinia, N.S. Moghaddam, A. Amerinatanzi, S. Saedi, G.P. Toker, Additive manufacturing of NiTiHf high temperature shape memory alloy, Scripta Materialia, 145, 90 (2018); https://doi.org/10.1016/j.scriptamat.2017.10.016.

G.S. Bigelow, A. Garg, O. Benafan, R.D. Noebe, S.A. Padula II, D.J. Gaydosh, Development and testing of a Ni50.5Ti27.2Hf22. 3 high temperature shape memory alloy, Materialia, 21, 101297 (2022); https://doi.org/10.1016/j.mtla.2021.101297.

O. Karakoc, K.C. Atli, O. Benafan, R.D. Noebe, I. Karaman, Actuation fatigue performance of NiTiZr and comparison to NiTiHf high temperature shape memory alloys, Materials Science and Engineering, 829, 142154 (2022); https://doi.org/10.1016/j.msea.2021.142154.

D.E. Nicholson, S.A. Padula II, R.D. Noebe, O. Benafan, R. Vaidyanathan, Thermomechanical behavior of NiTiPdPt high temperature shape memory alloy springs, Smart materials and structures 23(12), 125009 (2014); http://iopscience.iop.org/0964-1726/23/12/125009.

D. Xue, D. Xue, R.Yuan, Y. Zhou, P.V. Balachandran, X. Ding, J. Sun, T. Lookman, An informatics approach to transformation temperatures of NiTi based shape memory alloys, Acta Materialia, 125, 532 (2017); https://doi.org/10.1016/j.actamat.2016.12.009.

J. Wei, X. Chu, X. Sun, K. Xu, H. Deng, J. Chen, J., Z. Wei, M. Lei, Machine learning in materials science, InfoMat, 1(3), 338 (2019); https://doi.org/10.1002/inf2.12028.

A. Agrawal, A. Choudhary, Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science, APL Mater., 4, 053208 (2016); https://doi.org/10.1063/1.4946894.

S. Liu, B.B. Kappes, B.A. Ahmadi, Physics-informed machine learning for composition –process –property design: Shape memory alloy demonstration, Applied Materials Today, 22, 100898 (2021); https://doi.org/10.1016/j.apmt.2020.100898.

H. Abedi, K.S. Baghbaderani, A. Alafghani, Neural Network Modeling of NiTiHf Shape Memory Alloy Transformation Temperatures, Research Squrae, 1 (2021); https://doi.org/10.21203/rs.3.rs-952869/v1.

R. A. Aliev, J. Kacprzyk, W. Pedrycz, M. Jamshidi, M. Babanli, & F. M. Sadikoglu (Eds.). 14th International Conference on Theory and Application of Fuzzy Systems and Soft Computing – ICAFS-2020. Advances in Intelligent Systems and Computing. (Budva, Montenegro, 2021), p.467–471. https://doi.org/10.1007/978-3-030-64058-3_58.

A.O. Kabil, Y. Kaynak, H. Saruhan, O. Benafan, Multi-objective Optimization of Cutting Parameters for Machining Process of Ni-Rich NiTiHf High-Temperature Shape Memory Alloy Using Genetic Algorithm, Shape Memory and Superelasticity, 7, 270 (2021); https://doi.org/10.1007/s40830-021-00328-z.

S. Li, N.J.E. Adkins, S. McCain, M.M. Attallah, Suspended droplet alloying: A new method for combinatorial alloy synthesis; Nitinolbased alloys as an example, Journal of Alloys and Compounds., 768, 392 (2018); https://doi.org/10.1016/j.jallcom.2018.07.260.

O. Benafan, G.S. Bigelow, A. Garg, R.D. Noebe, D.J. Gaydosh, R.B. Rogers, Processing and Scalability of NiTiHf High-Temperature Shape Memory Alloys, Shape Memory and Superelasticity, 7(1), 109 (2021); https://doi.org/10.1007/s40830-020-00306-x.

G.P. Toker, M. Nematollahi, S.E. Saghaian, K.S. Baghbaderani, O. Benafan, Shape memory behavior of NiTiHf alloys fabricated by selective laser melting, Scripta Materialia, 178, 361 (2020); https://doi.org/10.1016/j.scriptamat.2019.11.056.

O. Benafan, G.S. Bigelow, D.A. Scheiman, Transformation behavior in NiTi-20Hf shape memory alloys – Transformation temperatures and hardness, Scripta Materialia, 146, 251 (2018); https://doi.org/10.1016/j.scriptamat.2017.11.050.

M. Nematollahi, G.P. Toker, K. Safaei, A. Hinojos, S.E. Saghaian, O. Benafan, Laser Powder Bed Fusion of NiTiHf High-Temperature Shape Memory Alloy: Effect of Process Parameters on the Thermomechanical Behavior, Metals, 10(11), 1522 (2020); https://doi.org/10.3390/met10111522.

N. Babacan, M. Bilal, C. Hayrettin, J. Liu, O. Benafan, I. Karaman, Effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 high-temperature shape memory alloy Acta Materialia, 157, 228 (2018); https://doi.org/10.1016/j.actamat.2018.07.009.

B. Amin-Ahmadi, T. Gallmeyer, J.G. Pauza, T.W. Duerig, R.D. Noebe, A.P. Stebner, Effect of a pre-aging treatment on the mechanical behaviors of Ni50.3Ti49.7-xHfx (x ≤9 at. %) shape memory alloys, Scripta Materialia, 147, 11 (2018); https://doi.org/10.1016/j.scriptamat.2017.12.024.

M. Moshref-Javadi, S.H. Seyedein, M.T. Salehi, M.R. Aboutalebi, Age-induced multi-stage transformation in a Ni-rich NiTiHf alloy, Acta Materialia, 61(7), 2583 (2013); https://doi.org/10.1016/j.actamat.2013.01.037.

J.P. Oliveira, N. Schell, N. Zhou, L. Wood, O. Benafan, Laser welding of precipitation strengthened Ni-rich NiTiHf high temperature shape memory alloys: Microstructure and mechanical properties, Materials & Design, 162, 229 (2019); https://doi.org/10.1016/j.matdes.2018.11.053.

G.S. Bigelow, O. Benafan, A. Garg, R.D. Noebe, Effect of Hf/Zr ratio on shape memory properties of high temperature Ni50.3Ti29.7 (Hf, Zr)20 alloys, Scripta Materialia, 194, 113623 (2021); https://doi.org/10.1016/j.scriptamat.2020.11.008.

G.S. Bigelow, O. Benafan, A. Garg, R. Lundberg, R.D. Noebe, Effect of Composition and Applied Stress on the Transformation Behavior in NixTi80- x Zr20 Shape Memory Alloys, Shape Memory and Superelasticity,, 5 (4), 444 (2019); https://doi.org/10.1007/s40830-019-00259-w.

N.A. Ley, R.W. Wheeler, O. Benafan, M.L. Young, Characterization of Thermomechanically Processed High-Temperature Ni-Lean NiTi–20 at.% Hf Shape Memory Wires, Shape Memory and Superelasticity. 5, 476 (2019); https://doi.org/10.1007/s40830-019-00254-1.

P.S. Chaugule, O. Benafan, J.B. le Graverend, Phase transformation and viscoplasticity coupling in polycrystalline nickel titanium-hafnium high-temperature shape memory alloys Acta Materialia, 221, 117381 (2021); https://doi.org/10.1016/j.actamat.2021.117381.

O. Benafan, G.S. Bigelow, D.A. Scheiman, Transformation behavior in NiTi-20Hf shape memory alloys Transformation temperatures and hardness, Scripta Materialia, 146, 251 (2018); https://doi.org/10.1016/j.scriptamat.2017.11.050.

N. Zarkevich, O. Benafan, J. Lawson, Controlling properties by chemistry in doped shape memory alloys, APS March Meeting, abstract id.S41.006 (2021).

L. Han, K.K. Song , L.M. Zhang, H. Xing, B. Sarac, F. Spieckermann, T. Maity, M. Muhlbacher, L. Wang, I. Kaban, and J. Eckert, Microstructures, Martensitic Transformation, and Mechanical Behavior of Rapidly Solidified Ti-Ni-Hf and Ti-Ni-Si Shape Memory Alloys, Journal of Materials Engineering and Performance, 27, 1005 (2018) https://doi.org/10.1007/s11665-018-3209-x.

S.M. Kornegay, M. Kapoor, B.C. Hornbuckle, D. Tweddle, M.L. Weaver, O. Benafan, G. Bigelow, R. Noebe, G. Thompson, Influence of H-phase precipitation on the microstructure and functional and mechanical properties in a Ni-rich NiTiZr shape memory alloy, Materials Science and Engineering: A., 801, 140401 (2021); https://doi.org/10.1016/j.msea.2020.140401.

J.P. Oliveira, J. Shen, J.D. Escobar, C.A.F. Salvador, N. Schell, N. Zhou, Laser welding of H-phase strengthened Ni-rich NiTi-20Zr high temperature shape memory alloy, Materials & Design, 202, 109533 (2021); https://doi.org/10.1016/j.matdes.2021.109533.

N.N. Kuranova, A.V. Pushin, V.G. Pushin, N.I.Z. Kourov, Structure and Thermoelastic Martensitic Transformations in Ternary Ni–Ti–Zr Alloys with High-Temperature Shape Memory Effects, Physics of Metals and Metallography, 119, 582 (2018); https://doi.org/10.1134/S0031918X18060091.

A. N. Titenko, L. D. Demchenko, M. B. Babanli,I. V. Sharai, Ya. А. Titenko, Effect of thermomechanical treatment on deformational behavior of ferromagnetic Fe–Ni–Co–Ti alloy under uniaxial tension, Applied Nanoscience, 9, 937 (2019); https://doi.org/10.1007/s13204-019-00971-0.

O Benafan, R.D. Noebe, S.A. Padula II, D.W. Brown, S. Vogel, Thermomechanical cycling of a NiTi shape memory alloy-macroscopic response and microstructural evolution, International Journal of Plasticity, 56, 99 (2014); https://doi.org/10.1016/j.ijplas.2014.01.006.

O. Benafan, G.S. Bigelow, A. Garg, Thermomechanical Behavior of NiTi-8Hf Low-Temperature Shape Memory Alloys, Shape Memory and Superelasticity, 7, 314 (2021); https://doi.org/10.1007/s40830-021-00325-2.

O. Karakoc, K.C. Atli, A. Evirgen, J. Pons, R. Santamarta, O. Benafan, R. Noebe, I. Karaman, Effects of training on the thermomechanical behavior of NiTiHf and NiTiZr high temperature shape memory alloys, Materials Science and Engineering: A., 794(5), 139857 (2020); https://doi.org/10.1016/j.msea.2020.139857.

O. Benafan, A. Garg, R.D. Noebe, G.S. Bigelow, S.A. Padula II, D.J. Gaydosh, N. Schell, J.H. Mabe, R. Vaidyanathan, Mechanical and functional behavior of a Ni-rich Ni50.3Ti29.7Hf20 high temperature shape memory alloy, Intermetallics, 50, 94 (2014); https://doi.org/10.1016/j.intermet.2014.02.006.

H.E. Karaca, S.M. Saghaian ,G. Ded , H. Tobe, B. Basaran , H.J. Maier , R.D. Noebe , Y.I. Chumlyakov, Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy, Acta Materialia, 61(19), 7422 (2013); https://doi.org/10.1016/j.actamat.2013.08.048.

O. Benafan, D.J. Gaydosh, Machined helical springs from NiTiHf shape memory alloy ,Smart Materials and Structures., 29(12), 125001(2020); https://doi.org/10.1088/1361-665X/abbec9.

K.E. Kirmacioglu, Y. Kaynak, O. Benafan, Machinability of Ni-rich NiTiHf high temperature shape memory alloy, Smart Materials and Structures., 28(5), 055008(2019); https://doi.org/10.1088/1361-665X/ab02a2.

O. Benafan, D.J. Gaydosh, Constant-torque thermal cycling and two-way shape memory effect in Ni50.3Ti29. 7Hf20 torque tubes, Smart Materials and Structures, 27(7), 075035 (2018); https://doi.org/10.1088/1361-665X/aac665.

O. Benafan, R.D. Noebe, T.J. Halsmer, S.A. Padula, G.S. Bigelow, G.J. Gaydosh, A. Garg, Constant-Strain Thermal Cycling of a Ni50.3Ti29.7Hf20 High-Temperature Shape Memory Alloy. Shape Memory and Superelasticity, 2, 218 (2016); https://doi.org/10.1007/s40830-016-0068-x.

##submission.downloads##

Опубліковано

2023-06-25

Як цитувати

Імамалізаде, Ч. (2023). Виробництво сплавів на основі нітинолу на основі сучасних технологій: Огляд. Фізика і хімія твердого тіла, 24(2), 341–347. https://doi.org/10.15330/pcss.24.2.341-347

Номер

Розділ

Технічні науки