Нанокомпозит NiFeO4 / відновлений оксид графену отриманий методом золь-гель автогоріння: морфологічні та електричні властивості

Автор(и)

  • В.М. Бойчук Прикарпатський національний університет імені Василя Стефаника, Івано-Франківськ, Україна
  • Р.І. Запухляк Прикарпатський національний університет імені Василя Стефаника, Івано-Франківськ, Україна
  • Р.Г. Абасзаде Азербайджанський державний університет нафти і промисловості, Баку, Азербайджан
  • В.О. Коцюбинський Прикарпатський національний університет імені Василя Стефаника, Івано-Франківськ, Україна
  • М.А. Годлевський Прикарпатський національний університет імені Василя Стефаника, Івано-Франківськ, Україна
  • Б.І. Рачій Прикарпатський національний університет імені Василя Стефаника, Івано-Франківськ, Україна
  • Л.В. Туровська Івано-Франківський національний медичний університет, Івано-Франківськ, Україна
  • А.М. Дмитрів Івано-Франківський національний медичний університет, Івано-Франківськ, Україна
  • С.В. Федорченко Прикарпатський національний університет імені Василя Стефаника, Івано-Франківськ, Україна

DOI:

https://doi.org/10.15330/pcss.23.4.815-824

Ключові слова:

оксид графену, нанокомпозит, нікелевий ферит, месбауерівська спектроскопія, електрична провідність

Анотація

Методом золь-гель автогоріння отримано ультрадисперсні композити NiFe2O4 (T0) і NiFe2O4 / rGO. Наявність rGO в ком­позиті (33 мас. % (Т1) або 66 мас. % (Т2)) зумовлює зменшення середнього розміру частинок оксидної фази з 16 до 10-11 нм з переходом їх у суперпарамагнітний стан зі зниження ступеня інверсії фази змішаної шпінелі NiFe2O4. Зна­чення SBET для матеріалів Т1 і Т2 становлять 180 і 315 м2/г відповідно, зменшуючись до 78 і 169 м2/г після відпалу в діа­пазоні температур 200-800°C. Для зразка Т2 спостерігаються як мікро-, так і малі мезопори (розмір 2,0-4,5 нм), тоді як зраз­ки Т0 і Т1 є переважно мезопористими. Для чистої шпінелі T0 домінує механізм електропровідності, базований на транс­порті малих поляронів, в той час як композитів NiFe2O4 / rGO переважає стрибковий транспорт заряду електронів. Вста­новлено, що присутність  компоненти оксиду графену знижує температуру реакції горіння та запобігає агломерації час­тинок оксидної фази .

Посилання

E. Carlos, R. Martins, E. Fortunato, R. Branquinho, Frontispiece: Solution Combustion Synthesis: Towards a Sustainable Approach for Metal Oxides, Chemistry – A European Journal, 26, 9099(2020); https://doi.org/10.1002/chem.202084264

A. Varma, A. S. Mukasyan, A. S. Rogachev, K. V. Manukyan, Solution combustion synthesis of nanoscale materials, Chem. Rev., 116, 14493 (2016); https://doi.org/10.1021/acs.chemrev.6b00279.

A. Sutka, G. Mezinskis, Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials, Frontiers of Materials Science, 128, 6 (2012); https://doi.org/10.1007/s11706-012-0167-3.

V. Boychuk, V. Kotsyubynsky, Kh. Bandura, I. Yaremiy, R. Zapukhlyak, S. Fedorchenko, Self-combustion synthesized NiFe2O4 / reduced graphene oxide composite nanomaterials: Effect of chelating agent type on the crystal struc¬ture and magnetic properties, Mater. Today: Proc., 35, 542 (2021); https://doi.org/10.1016/j.matpr.2019.10.026.

S. B. Narang, K. Pubby, Nickel spinel ferrites: a review”, J. Magn. Magn. Mater., 519, 167 (2021); https://doi.org/10.1016/j.jmmm.2020.167163.

V.M. Boychuk, V.O. Kotsyubunsky, K.V. Bandura, B.I. Rachii, I.P. Yaremiy, S.V. Fedorchenko, Structural and electrical properties of nickel-iron spinel/reduced graphene oxide nanocomposites, Mol. Cryst. Liq. Cryst., 673, 137 (2019); https://doi.org/10.1080/15421406.2019.1578503.

V. O. Kotsyubynsky, V. M. Boychuk, I. M. Budzulyak, B. I. Rachiy, M. A. Hodlevska, A. I. Kachmar, M.A. Hodlevsky, Graphene oxide synthesis using modified Tour method, Adv. Nat. Sci.: Nanosci. Nanotechnol., 12, 035006 (2021); https://doi.org/10.1088/2043-6262/ac204f.

H. Salazar-Tamayo, K. E. García, C. A. Barrero, New method to calculate Mössbauer recoilless f-factors in NiFe2O4 Magnetic, morphological and structural properties, J. Magn. Magn. Mater., 471, 242 (2019); https://doi.org/10.1016/j.jmmm.2018.09.066.

R. S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, M. Hajdúchová, Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion, J. Phys. Chem. Solids, 107, 150 (2017); https://doi.org/10.1021/acsomega.9b03191 .

R. Tiwari, M. De, H. S. Tewari, & S. K. Ghoshal, Structural and magnetic properties of tailored NiFe2O4 nanostructures synthesized using auto-combustion method, Results Phys., 16, 102916 (2020); https://doi.org/10.1016/j.rinp.2019.102916.

M. Mozaffari, M. E. Arani, & J. Amighian, The effect of cation distribution on magnetization of ZnFe2O4 nanoparticles, J. Magn. Magn. Mater, 322, 3240 (2010); https://doi.org/10.1109/TMAG.2015.2440478.

R. D. Shannon, Revise deffective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst, 32, 751 (1976); https://doi.org/10.1107/S0567739476001551.

V. Kotsyubynsky, B. Ostafiychuk, V. Moklyak, A. Hrubiak, Synthesis, characterization and electrochemical properties of mesoporous maghemite γ-Fe2O3, In Solid State Phenomena, 230, 120 (2015); https://doi.org/10.4028/www.scientific.net/SSP.230.120.

T. Tatarchuk, N. Danyliuk, A. Shyichuk, V. Kotsyubynsky, I. Lapchuk, V. Mandzyuk, Green synthesis of cobalt ferrite using grape extract: the impact of cation distribution and inversion degree on the catalytic activity in the decomposition of hydrogen peroxide, Emergent Mater., 1 (2021); https://doi.org/10.1007/s42247-021-00323-1.

S. Mitra, K. Mandal, & P. A. Kumar, Temperature dependence of magnetic properties of NiFe2O4 nanoparticles em¬beded in SiO2 matrix, J. Magn. Magn. Mater, 306, 254 (2006); https://doi.org/10.1016/j.jmmm.2006.03.024.

B. V. Prasad, B. R. Babu, M. S. R. Prasad, Structural and dielectric studies of Mg2+ substituted Ni–Zn ferrite, Mater. Sci.-Pol., 33, 806 (2015); https://doi.org/10.1515/msp-2015-0111.

H. Salazar-Tamayo, K. E. G. Tellez, C. A. B. Meneses, Cation Vacancies in NiFe2O4 During Heat Treatments at High Temperatures: Structural, Morphological and Magnetic Characterization, Mat. Res., 22, 0298 (2019); https://doi.org/:10.1590/1980-5373-mr-2019-0298.

M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87, 1051 (2015);https://doi.org/10.1515/pac-2014-1117.

K. S. Sing, R. T. Williams, Physisorption hysteresis loops and the characterization of nanoporous materials, Adsorption Science & Technology, 22, 773 (2004); https://doi.org/10.1260/0263617053499032.

M. Younas, M. Nadeem, M. Atif, R. Grossinger, Metal-semiconductor transition in NiFe2O4 nanoparticles due to reverse cationic distribution by impedance spectroscopy, J. Appl. Phys., 109, 093704 (2011); https://doi.org/10.1063/1.3582142.

Z. Ž. Lazarević, Č. Jovalekić, A. Milutinović, D. Sekulić, V. N. Ivanovski, A.B. Rečnik, Ž. Cekić, N. Romčević, Nanodimensional spinel NiFe2O4 and ZnFe2O4 ferrites prepared by soft mechanochemical synthesis, J. Appl. Phys., 113, 187221 (2013); https://doi.org/10.1063/1.4801962.

A. Bhaumik, J. Narayan, Conversion of p to n-type reduced graphene oxide by laser annealing at room temperature and pressure, Journal of Applied Physics, 121, 125303 (2017); https://doi.org/10.1063/1.4979211.

Joung, D., Khondaker, S. I., “Efros-Shklovskii variable-range hopping in reduced graphene oxide sheets of varying carbon s p 2 fraction ”, Phys. Rev. B, 86(2012), 235423 https://doi.org/10.1103/PhysRevB.86.235423

A. Haque, M. Abdullah-Al Mamun, M. F. N. Taufique, P. Karnati, K. Ghosh, Large magnetoresistance and electrical transport properties in reduced graphene oxide thin film, IEEE Trans. Magn., 54, 1 (2018); https://doi.org/10.1109/TMAG.2018.2873508.

J. C. Dyre, T. B. Schrøder, Universality of ac conduction in disordered solids, Rev. Mod. Phys., 72, 873(2000); https://doi.org/10.1103/RevModPhys.72.873.

##submission.downloads##

Опубліковано

2022-12-24

Як цитувати

Бойчук, В., Запухляк, Р., Абасзаде, Р., Коцюбинський, В., Годлевський, М., Рачій, Б., … Федорченко, С. (2022). Нанокомпозит NiFeO4 / відновлений оксид графену отриманий методом золь-гель автогоріння: морфологічні та електричні властивості. Фізика і хімія твердого тіла, 23(4), 815–824. https://doi.org/10.15330/pcss.23.4.815-824

Номер

Розділ

Фізико-математичні науки

Статті цього автора (авторів), які найбільше читають

1 2 3 4 5 > >>