Дослідження теплових властивостей вуглецевих нанотрубок і карбоксильних груп – функціоналізованих вуглецевих нанотрубок
DOI:
https://doi.org/10.15330/pcss.24.3.530-535Ключові слова:
графіт, вуглецева нанотрубка, карбоксильна функціоналізація, метод дугового розряду, ТЕМ, ТГА, питома теплоємністьАнотація
У роботі наведено характеристики термічних властивостей вуглецевих нанотрубок (ВНТ), вуглецевих нанотрубок функціоналізованих карбоксильною групою (Ф-ВНТ) і графіту. Для характеризації використано методи TGA/DSC та TEM. Досліджено особливості перетворення ТГА характеристик для синтезованих вуглецевих наноматеріалів. Питома теплоємность зразків при постійному тиску збільшується із підвищенням температури.
Посилання
A. Szabo, C. Perri, A. Csato, G. Giordano, D. Vuono, J.B. Nagy, Synthesis Methods of Carbon Nanotubes and Related Materials, Materials, 3, 3092 (2010); https://doi.org/10.3390/ma3053092.
G. Rahman, Z. Najaf, A. Mehmood, S. Bilal, A. Shah, S.A. Mian, G. Ali, An Overview of the Recent Progress in the Synthesis and Applications of Carbon Nanotubes, C, 5, 3 (2019); https://doi.org/10.3390/c5010003.
D.K. Singh, P.K. Iyer, P. K. Giri, Diameter dependence of oxidative stability in multiwalled carbon nanotubes: Role of defects and effect of vacuum annealing, Journal of applied physics 108, 084313 (2010); https://doi.org/10.1063/1.3491022
A. Vignes, O. Dufauda, L. Perrina, D. Thomas, J. Bouillard, A. Janès, C. Vallières, Thermal ignition and self-heating of carbon nanotubes: From thermokinetic study to process safety, Chemical Engineering Science 64, 4210 (2009); https://doi.org/10.1016/j.ces.2009.06.072.
D. Bom, R. Andrews, D. Jacques, J. Anthony, B. Chen, M. S. Meier, J. P. Selegue, Thermogravimetric Analysis of the Oxidation of Multiwalled Carbon Nanotubes: Evidence for the Role of Defect Sites in Carbon Nanotube Chemistry, Nano Lett. 2, 615 (2002); https://doi.org/10.1021/nl020297u.
A.G. Bannov, M.V. Popov, P.B. Kurmashov, Thermal analysis of carbon nanomaterials: advantages and problems of interpretation, Journal of Thermal Analysis and Calorimetry 142, 349 (2020); https://doi.org/10.1007/s10973-020-09647-2.
M.A.Arshad, Thermo-oxidative decomposition of multi-walled carbon nanotubes: Kinetics and Thermodynamics, Fullerenes, nanotubes and carbon nanostructures, 28, 23 (2020); https://doi.org/10.1080/1536383X.2020.1775591
A.K. Singh, X. Hou, K. Chou, The oxidation kinetics of multi-walled carbon nanotubes, Corrosion Science 52(5), 1771 (2010); https://doi.org/10.1016/j.corsci.2010.01.029.
S. Sarkar, P.Kr. Das, S. Bysakh, Effect of heat treatment on morphology and thermal decomposition kinetics of multiwalled carbon nanotubes, Materials Chemistry and Physics, 125, 161 (2011); https://doi.org/10.1016/j.matchemphys.2010.08.088.
M. Ramezani, A. Dehghani, M.M. Sherif, Carbon nanotube reinforced cementitious composites: A comprehensive review, Construction and Building Materials, 315, 125100 (2022); https://doi.org/10.1016/j.conbuildmat.2021.125100.
L.H. Nguyen, T.V. Phi, P.Q. Phan, H.N. Vu, C. Nguyen-Duc, F. Fossard, Synthesis of multi-walled carbon nanotubes for NH3 gas detection, Physica E, 37(1-2), 54 (2007); https://doi.org/10.1016/j.physe.2006.12.006.
D. Fu, H. Lim, Y. Shi, X. Dong, S. G. Mhaisalkar, Y. Chen, Sh. Moochhala, L. Li, Differentiation of gas molecules using flexible and all-carbon nanotube devices, Journal of Physical Chemistry C, 112(3), 650 (2008); https://doi.org/10.1021/jp710362r.
M. Hassani, A. Tahghighi, M. Rohani, et al., Robust antibacterial activity of functionalized carbon nanotube- levofloxacine conjugate based on in vitro and in vivo studies. Sci.Rep. 12, 10064 (2022); https://doi.org/10.1038/s41598-022-14206-w.
M. Stetsenko, T. Margitych, S. Kryvyi, L. Maksimenko, A. Hassan, S. Filonenko, B. Li, J. Qu, E. Scheer, S. Snegir, Nanoparticle Self-Aggregation on Surface with 1,6-Hexanedithiol Functionalization. Nanomaterials, 10, 512 (2020); https://doi.org/10.3390/nano10030512.
R.G. Abaszade, O.A. Kapush, S.A. Mamedova, A.M. Nabiyev, S.Z. Melikova, S.I. Budzulyak, Gadolinium doping influence on the properties of carbon nanotubes, Physics and Chemistry of Solid State, 21(3) 404, (2020); https://doi.org/10.15330/pcss.21.3.404-408.
R.G. Abaszade, M.B. Babanli, V.O. Kotsyubynsky, A.G. Mammadov, E. Gür, О.A. Kapush, M.O.Stetsenko, R.I.Zapukhlyak, Influence of gadolinium doping on structural properties of carbon nanotube, Physics and Chemistry of Solid State, 24(1), 153 (2023); https://doi.org/10.15330/pcss.24.1.153-158.
A.G. Mammadov, R.G. Abaszade, V.O. Kotsyubynsky, E.Y. Gur, I.Y. Bayramov, E.A. Khanmamadova, O.A. Kapush, Photoconductivity of carbon nanotubes, Technical and Physical Problems of Engineering, 14(3), 155 (2022).
R.G. Abaszade, О.А. Kapush, A.M. Nabiev, Properties of carbon nanotubes doped with gadolinium, Journal of Optoelectronic and Biomedical Materials, 12(3), 61 (2020); https://chalcogen.ro/61_AbaszadeRG.pdf.
S.R. Figarova, E.M. Aliyev, R.G. Abaszade, V.R. Figarov, Negative Thermal Expansion of Sulphur-Doped Graphene Oxide,Advanced Materials Research, 1175, 55 (2023); https://doi.org/10.4028/p-rppn12.
L. Liu, X. Ye, K. Wu, R. Han, Z. Zhou, and T. Cui, Humidity Sensitivity of Multi Walled Carbon Nanotube Networks Deposited by Dielectrophoresis, Sensors (Basel), 9(3), 1714 (2009); https://doi.org/10.3390/s90301714.
Haixia Wang, Jingfeng Li, Xiaoyuan Zhang, Zhaofei Ouyang, Qing Li, Zhiqiang Su Gang Wei, Synthesis, characterization and drug release application of carbon nanotube-polymer nanosphere composites, RSC Adv., 3, 9304 (2013); https://doi.org/10.1039/C3RA40997J.
R.K. Rajput, Enginerreng termodinamics, third edition 2007, 966p.
S. Hazarika, N. Paul, D. Mohanta, Rapid hydrothermal route to synthesize cubic-phase gadolinium oxide
nanorods. Bulletin of Materials Science, 37(4), 789 (2014); https://link.springer.com/article/10.1007/s12034-014-0007-4.
N.R Pradhan, H Duan, J. Liang, G.S. Iannacchione, The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes, Nanotechnology, 20, 245705 (2009); https://doi.org/10.1088/0957-4484/20/24/245705.
K. S. Patil, G. R. Gupta, Thermal investigations of multiwall carbon nanotubes, International Journal of Management, Technology And Engineering Volume IX, Issue I, (2019); https://ijamtes.org/gallery/187-jan19.pdf .
A.T. Butland, R.J. Maddison, The specific heat of graphite: An evaluation of measurements, Journal of Nuclear Materials, 49, 45 (1973); https://doi.org/10.1016/0022-3115(73)90060-3.
S.Picard, D.T. Burns, P.Roger, Measurement of the Specific Heat Capacity of Graphite, Bureau International des Poids et Mesures, 1 (2006);
E. Solfiti, F. Berto A review on thermophysical properties of flexible graphite, Procedia Structural Integrity 26, 187 (2020); https://doi.org/10.1016/j.prostr.2020.06.022.