Селективне лазерне спікання аморфних наночастинок: моделювання методом молекулярної динаміки
DOI:
https://doi.org/10.15330/pcss.25.1.5-13Ключові слова:
Селективне лазерне плавлення, наночастинки, рідкофазне спікання, метод молекулярної динаміки, парні кореляційні функції, функції розподілу координаційних чиселАнотація
В роботі досліджено процес рідкофазного спікання аморфних наночастинок на основі заліза методом молекулярної динаміки. Для моделювання використано пакет для класичної молекулярної динаміки LAMMPS. Візуальний аналіз атомних конфігурацій наночастинок під час їхнього швидкого охолодження дозволив виявити ефект самоочищення частинок. Для аналізу атомної структури наночастинок після спікання використали парціальні парні кореляційні функції та функції розподілу координаційних чисел. В результаті аналізу основних структурних параметрів, які отримали з використанням вказаних функцій встановили відмінності атомного складу та структури об’єму та поверхні наночастинок.
Посилання
V. Anthony, Teran and Andreas Bill, Time-evolution of grain size distributions in random nucleation and growthcrystallization processes, Phys. Rev. B, 81(7), 075319 (2010); https://doi.org/10.1103/PhysRevB.81.075319.
M. El Wahabi, L. Gavard, F. Montheillet, J.M. Cabrera, J.M. Prado, Effect of initial grain size on dynamic recrystallization in high purity austenitic stainless steels, Acta Materialia, 53(17), 4605 (2005); https://doi.org/10.1016/j.actamat.2005.06.020.
J. Pelleg, Grain Size Effect on Mechanical Properties. In: Mechanical Properties of Silicon Based Compounds: Silicides (Engineering Materials, Springer, Cham, 2019); https://doi.org/10.1007/978-3-030-22598-8_13.
R.B. Figueiredo, T.G. Langdon, Effect of grain size on strength and strain rate sensitivity in metals. J Mater Sci, 57, 5210 (2022); https://doi.org/10.1007/s10853-022-06919-0.
M. Naghizadeh, H. Mirzadeh, Effects of Grain Size on Mechanical Properties and Work-Hardening Behavior of AISI 304 Austenitic Stainless Steel, Steel research international, 90(10), 1900153 (2019); https://doi.org/10.1002/srin.201900153.
J. M. Maita, S. Rommel, J. R. Davis, H. Ryou, J. A. Wollmershauser, E. P. Gorzkowski, B. N. Feigelson, M. Aindow, S. Lee, Grain size effect on the mechanical properties of nanocrystalline magnesium aluminate spinel, Acta Materialia, 251, 118881 (2023); https://doi.org/10.1016/j.actamat.2023.118881.
Y. Qin, P. Wen, D. Xia, H. Guo, M. Voshage, L. Jauer, Y. Zheng, J. H. Schleifenbaum, Y. Tian, Effect of grain structure on the mechanical properties and in vitro corrosion behavior of additively manufactured pure Zn, Additive Manufacturing, 33, 101134 (2020); https://doi.org/10.1016/j.addma.2020.101134.
K. Zhou, B. Liu, Y. Yao, K. Zhong, Effects of grain size and shape on mechanical properties of nanocrystalline copper investigated by molecular dynamics, Materials Science and Engineering: A, 615, 92 (2014); https://doi.org/10.1016/j.msea.2014.07.066.
L.-C. Zhang, Z. Jia, F. Lyu, S.-X. Liang, A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects, Prog. Mater. Sci., 105, 100576 (2019); https://doi.org/10.1016/j.pmatsci.2019.100576.
M. Jakab, J. Scully, On-demand release of corrosion-inhibiting ions from amorphous Al–Co–Ce alloys, Nature Mater, 4, 667 (2005); https://doi.org/10.1038/nmat1451.
Y.C. Li, C. Zhang, W. Xing, S.F. Guo, L. Liu, ACS Design of Fe-Based Bulk Metallic Glasses with Improved Wear Resistance, Appl. Mater. Interfaces, 10, 43144 (2018); https://doi.org/10.1021/acsami.8b11561.
A. L. Greer, Physical Metallurgy (Fifth Edition), Capter 4 - Metallic Glasses, (Elsevier, Amsterdam, 2014); https://doi.org/10.1016/B978-0-444-53770-6.00004-6.
K. Russew, L. Stojanova, Most Important Methods for Production of Amorphous Metallic Alloys. In: Glassy Metals (Springer, Berlin, Heidelberg, 2016); https://doi.org/10.1007/978-3-662-47882-0_2.
Si. Yamaura, W, Zhang, A, Inoue, Introduction to Amorphous Alloys and Metallic Glasses. Novel Structured Metallic and Inorganic Materials (Springer, Singapore, 2019); https://doi.org/10.1007/978-981-13-7611-5_1.
Y. Yokoyama, E. Mund, A. Inoue, L. Schultz, Production of Zr55Cu30Ni5Al10 Glassy Alloy Rod of 30 mm in Diameter by a Cap-Cast Technique, Mater. Trans., 48, 3190 (2007); https://doi.org/10.2320/matertrans.MRP2007164.
W.H. Wang, Roles of minor additions in formation and properties of bulk metallic glasses, Prog. Mater. Sci. 52, 540 (2007); https://doi.org/10.1016/j.pmatsci.2006.07.003.
N. Nishiyama, K. Takenaka, H. Miura, N. Saidoh, Y. Zeng, A. Inoue, The world's biggest glassy alloy ever made, Intermetallics, 30, 19 (2012); https://doi.org/10.1016/j.intermet.2012.03.020.
J. Schroers, Processing of Bulk Metallic Glass, Adv. Mater. 22, 1566 (2010); https://doi.org/10.1002/adma.200902776.
O. Diegel, Comprehensive Materials Processing, 10.02 - Additive Manufacturing: An Overview, (Elsevier, Amsterdam, 2014); https://doi.org/10.1016/B978-0-08-096532-1.01000-1.
E. Tempelman, H. Shercliff and B. Ninaber van Eyben, Manufacturing and Design Understanding the principles of how things are made (Elsevier, Amsterdam, 2014); https://doi.org/10.1016/C2011-0-08438-7.
D. Godec, J. Gonzalez-Gutierrez, A. Nordin, E. Pei, J. Ureña Alcázar, A Guide to Additive Manufacturing (Springer, Cham, 2022); https://doi.org/10.1007/978-3-031-05863-9.
Y. Shen, Y. Li, C. Chen, H. -L. Tsai, 3D printing of large, complex metallic glass structures, Materials & Design, 117, 213 (2017); https://doi.org/10.1016/j.matdes.2016.12.087.
C. Zhang, D. Ouyang, S. Pauly, L. Liu, 3D printing of bulk metallic glasses, Materials Science and Engineering: R: Reports, 145, 100625 (2021); https://doi.org/10.1016/j.mser.2021.100625.
Z. J. Liu, Q. Cheng, Y. Wang, Y. Li, J. Zhang, Sintering neck growth mechanism of Fe nanoparticles: A molecular dynamics simulation, Chemical Engineering Science, 218, 115583 (2020); https://doi.org/10.1016/j.ces.2020.115583.
J. Guo, P. Ji, L. Jiang, G. Lin Y. Meng, Femtosecond laser sintering Al nanoparticles: A multiscale investigation of combined molecular dynamics simulation and two-temperature model, Powder Technology, 407, 117682 (2022); https://doi.org/10.1016/j.powtec.2022.117682.
S. Kurian, R. Mirzaeifar, Selective laser melting of aluminum nano-powder particles, a molecular dynamics study, Additive Manufacturing, 35, 101272 (2020); https://doi.org/10.1016/j.addma.2020.101272.
K. Peng, H. Huang, H. Xu, Y. Kong, L. Zhu, Z. Liu, A molecular dynamics study of laser melting of densely packed stainless steel powders, International Journal of Mechanical Sciences, 243, 108034 (2023); https://doi.org/10.1016/j.ijmecsci.2022.108034.
A. Abedini, A. Montazeri, A. Malti, A. Kardani, Mechanical properties are affected by coalescence mechanisms during sintering of metal powders: Case study of Al-Cu nanoparticles by molecular dynamics simulation, Powder Technology, 405, 117567 (2022); https://doi.org/10.1016/j.powtec.2022.117567.
J. Nandy, N. Yedla, P. Gupta, H. Sarangi, S. Sahoo, Sintering of AlSi10Mg particles in direct metal laser sintering process: A molecular dynamics simulation study, Materials Chemistry and Physics, 236, 121803 (2019); https://doi.org/10.1016/j.matchemphys.2019.121803.
Web source: https://www.lammps.org.
Web source: https://www.ovito.org/.
M. I. Baskes, J. S. Nelson, and A. F. Wright, Semiempirical modified embedded-atom potentials for silicon and germanium, Phys. Rev. B, 40(9), 6085 (1989); https://doi.org/10.1103/PhysRevB.40.6085.
B. Jelinek, S. Groh, M. F. Horstemeyer, J. Houze, S. G. Kim, G. J. Wagner, A. Moitra, and M. I. Baskes, Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys, Phys. Rev. B, 85(24), 245102 (2012); https://doi.org/10.1103/PhysRevB.85.245102.
A. Malti, A. Kardani, A. Montazeri, An insight into the temperature-dependent sintering mechanisms of metal nanoparticles through MD-based microstructural analysis, Powder Technol., 386, 30 (2021); https://doi.org/10.1016/j. powtec.2021.03.037.
W.D. Kingery, M. Berg, Study of the initial stages of sintering solids by viscous flow, evaporation-condensation, and self-diffusion, J. Appl. Phys., 26 (10), 1205 (1955); https://doi.org/10.1063/1.1721874.
J. P. Hansen, I. R. McDonald, Theory of Simple Liquids (Fourth Edition) (Elseiver, Amsterdam, 2013); https://doi.org/10.1016/C2010-0-66723-X.
J.C. Slater, Atomic Radii in Crystals, The Journal of Chemical Physics., 41(10), 3199 (1964); https://doi.org/10.1063/1.1725697.
E. Clementi, D.L.Raimondi, W.P. Reinhardt, Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons, The Journal of Chemical Physics., 47(4), 1300 (1967); https://doi.org/10.1063/1.1712084.
Y. Waseda, The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids (McGraw-Hill International Book Company, New York, 1980);
B. E. Douglas, S. -M. Ho, Structure and Chemistry of Crystalline Solids (Springer, New York, 2006); https://doi.org/10.1007/0-387-36687-3.
A. L. Efros and M. Rosen, The Electronic Structure of Semiconductor Nanocrystals, Annu. Rev. Mater. Sci., 30, 475 (2000); https://doi.org/10.1146/annurev.matsci.30.1.475.
S.C. Erwin, L. Zu, M.I. Haftel, et al., Doping semiconductor nanocrystals, Nature, 436, 91 (2005); https://doi.org/10.1038/nature03832.
G. M. Dalpian and J.R. Chelikowsky, Self-Purification in Semiconductor Nanocrystals, Phys. Rev. Lett., 96, 226802 (2006); https://doi.org/10.1103/PhysRevLett.96.226802.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2024 I. Shtablavyi, N. Popilovskyi, Yu. Nykyruy, S. Mudry
Ця робота ліцензованаІз Зазначенням Авторства 3.0 Міжнародна.