Квантово-хімічне дослідження просторової будови і електронної структури активних центрів поверхні бездефектного нанодисперсного анатазу та допованого його кластером Ag2 похідного

Автор(и)

  • О.В. Філоненко Інститут хімії поверхні ім. О.О. Чуйка НАН України
  • В.В. Лобанов Інститут хімії поверхні ім. О.О. Чуйка НАН України
  • О.П. Яворовський Національний медичний університет імені О.О. Богомольця, м. Київ, Україна
  • В.М. Рябовол Національний медичний університет імені О.О. Богомольця, м. Київ, Україна
  • М.М. Загорний Інститут проблем матеріалознавства імені І.М. Францевича НАН України, м. Київ, Україна
  • O.Ю. Хижун Інститут проблем матеріалознавства імені І.М. Францевича, Київ, Україна

DOI:

https://doi.org/10.15330/pcss.26.1.35-42

Ключові слова:

поверхня анатазу, адсорбція димерів Аргентуму, метод функціоналу густини

Анотація

Методом функціоналу густини з гібридним обмінно-кореляційним функціоналом B3LYP та валентним базисним набором sbkjc з ефективним остовним потенціалом проведено квантово-хімічне моделювання центрів адсорбції димерів Ag на поверхні анатазу. Проаналізовано зміни геометричної та електронної структури кластера Ag2 при адсорбції, визначені найбільш стабільні його положення на поверхні ТiО2.

Посилання

A. Jain, D. Vaya, Photocatalytic activity of TiO2 nanomaterial, Journal of the Chilean Chemical Society, 62(4), 3683 (2017); http://dx.doi.org/10.4067/s0717-97072017000403683.

C. Oprea, M. Gîrțu, Structure and electronic properties of TiO2 nanoclusters and dye–nanocluster systems appropriate to model hybrid photovoltaic or photocatalytic applications, Nanomaterials. 9(3), 357 (2019); https://doi.org/10.3390/nano9030357.

F. Han, V.S.R. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review, Applied Catalysis A: General. 359(2), 25 (2009); https://doi.org/10.1016/j.apcata.2009.02.043.

J. Prakash, J. Cho, Y.K. Mishra, Photocatalytic TiO2 nanomaterials as potential antimicrobial and antiviral agents: Scope against blocking the SARS-COV-2 spread, Micro and Nano Engineering. 14, 100100 (2022); https://doi.org/10.1016/j.mne.2021.100100.

M.M. Zahornyi , N.I. Tyschenko, T.F. Lobunets, O.F. Kolomys, V.V. Strelchuk, K.S. Naumenko, L.O. Biliavska, S.D. Zahorodnia, O.M. Lavrynenko, A.I. Ievtushenko. The Ag influence on the surface states of TiO2, optical activity and its cytotoxicity, Journal of Nano- and Electronic. Physics. 13, 06009 (2021); https://doi.org/10.21272/jnep.13(6).06009.

M. Zahornyi, G. Sokolsky, Nanosized titania composites for reinforcement of photocatalysis and photoelectrocatalysis. (Academic Cambridge Scholars Publishing, Newcastle upon Tyne, UK, 2022).

M.D. Hernández‐Alonso, F. Fresno, S. Suárez, J.M. Coronado. Development of alternative photocatalysts to TiO2: Challenges and opportunities, Energy & Environmental Science, 2(12), 1231 (2009).

S.F. Chen, J.P. Li, K. Qian, W.P. Xu, Y. Lu, W.X. Huang, S.H. Yu. Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect, Nano Research, 3(4), 244 (2010); https://doi.org/10.1007/s12274-010-1027-z.

Y. Wang, R. Zhang, J. Li, L. Li, S. Lin. First-principles study on transition metal-doped anatase TiO2, Nanoscale Research Letters, 9(1), 46 (2014); https://doi.org/10.1186/1556-276X-9-46.

A.S. Mazheika, V.E. Matulis, O.A. Ivashkevich. Density functional study of adsorption of Agn (n = 2, 4, 8) on partially reduced TiO2 (110) surface, Journal of Molecular Structure: THEOCHEM, 950(1-3), 46 (2010); https://doi.org/10.1016/j.theochem.2010.03.024.

A.S. Mazheika, V.E. Matulis, O.A. Ivashkevich, Quantum chemical study of adsorption of Ag2, Ag4 and Ag8 on stoichiometric TiO2 (110) surface, Journal of Molecular Structure: THEOCHEM, 942, 47 (2010); https://doi.org/10.1016/j.theochem.2009.11.032.

M.P. Lara-Castells, C. Cabrillo, D.A. Micha, A.O. Mitrushchenkov, T. Vazhappilly, Ab initio design of light absorption through silver atomic cluster decoration of TiO2, Phys. Chem. Chem. Phys. 20, 19110 (2018); https://doi.org/10.1039/C8CP02853B.

X. Tong, L. Benz, S. Chrétien, P. Kemper, A. Kolmakov, H. Metiu, S.K. Buratto, Pinning mass-selected Agn clusters on the TiO2 (110) – 11 surface via deposition at high kinetic energy, The Journal of Chemical Physics, 123(20), 204701 (2005); https://doi.org/10.1063/1.2118587.

D. Pillay, G.S. Hwang. Structure of small Aun, Agn, and Cun clusters (n=2−4) on rutile TiO2(110): A density functional theory study, Journal of Molecular Structure: THEOCHEM, 771(1-3), 129 (2006); https://doi.org/10.1016/j.theochem.2006.03.040.

J.P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Physscal Review B, 54, 16533 (1996); https://doi.org/10.1103/PhysRevB.54.16533.

F. Angelis, C. Valentin, S. Fantacci, A. Vittadini, A. Selloni, Theoretical studies on anatase and less common TiO2 phases: Bulk, surfaces, and nanomaterials, Chemical Reviews, 114(19), 9708 (2014); https://doi.org/10.1021/cr500055q.

S. Grimme, J. Antony, S. Ehrlich, H. Krieg. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. Journal of Chemical Physics 132, 154104 (2010); https://doi.org/10.1063/1.3382344.

W.J. Stevens, M. Krauss, H. Basch, P.G. Jasien, Relativistic compact effective potentials and efficient, shared-exponent basis sets for the third-, fourth-, and fifth-row atoms, Canadian Journal of Chemistry, 70(2), 612 (1992); https://doi.org/10.1139/v92-085.

R. Koch, A. S. Lipton, S. Filipek, V. Renugopalakrishnan, Arginine interactions with anatase TiO2 (100) surface and the perturbation of 49Ti NMR chemical shifts – a DFT investigation: relevance to Renu-Seeram bio solar cell, Journal of Molecular Modeling, 17(6), 1467 (2010); https://doi.org/10.1007/s00894-010-0853-y.

W. Pipornpong, R. Wanbayor, V. Ruangpornvisuti, Adsorption CO2 on the perfect and oxygen vacancy defect surfaces of anatase TiO2 and its photocatalytic mechanism of conversion to CO, Applied Surffce Science, 257(24), 10322 (2011); https://doi.org/10.1016/j.apsusc.2011.06.013.

F. Labat, P. Baranek, C. Domain, C. Minot, C. Adamo, Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: Performances of different exchange-correlation functionals, The Journal of Chemical Physics, 126(15), 154703 (2007); https://doi.org/10.1063/1.2717168.

U. Diebold, The surface science of titanium dioxide, Surface Science Reports, 48(5-8), 53 (2003); https://doi.org/10.1016/S0167-5729(02)00100-0.

V. Blagojevic, Y.-R. Chen, M. Steigerwald, R. Brus, A. Friesner. Quantum chemical investigation of cluster models for TiO2 nanoparticles with water-derived ligand passivation: studies of excess electron states and implications for charge transport in the gratzel cell, The Journal of Physical Chemistry C, 113, 19806 (2009); https://doi.org/10.1021/jp905332z.

##submission.downloads##

Опубліковано

2025-02-19

Як цитувати

Філоненко, О., Лобанов, В., Яворовський , О., Рябовол, В., Загорний, М., & Хижун O. (2025). Квантово-хімічне дослідження просторової будови і електронної структури активних центрів поверхні бездефектного нанодисперсного анатазу та допованого його кластером Ag2 похідного. Фізика і хімія твердого тіла, 26(1), 35–42. https://doi.org/10.15330/pcss.26.1.35-42

Номер

Розділ

Хімічні науки

Статті цього автора (авторів), які найбільше читають