Review of photocatalytic and antimicrobial properties of metal oxide nanoparticles
DOI:
https://doi.org/10.15330/pcss.22.1.5-15Keywords:
metal oxide nanoparticles, characterization, photocatalytic activity, mechanism, antimicrobial activityAbstract
Photocatalytic degradation is an effective method to alleviate environmental pollution which is caused by organic pollutants. The expanding natural contamination has attracted the overall scientists to deal with the advancement of photocatalyst effectively depends on semiconductor for the treatment of defiled water assets by different natural poisons that are delivered from numerous industries. In this work, the research progress of properties and applications of photocatalytic and antimicrobial activities and understanding of the toxicity mechanisms of different metal oxide nanoparticles are reviewed. The metal oxide nanoparticles are a wide band hole semiconductor that can be eager to create electron opening sets when transmitted with light. Photographs are an actuated electron opening that instigates power hydrogen, oxygen, and debases inorganic/natural/organic mixes to make power. This review aims to examine the wide biological and mechanisms of photocatalytic degradation and antimicrobial applications.
References
H. Assi, S. Atiq, S.M. Rammay, N.S. Alzayed, M. Saleem, S. Riaz, S. Naseem, J Mater Sci. Mater. Electron 28 (2017) (https://doi.org/10.1007/s10854-016-5795-4).
A.M. Allahverdiyev, E.S. Abamor, M. Bagirova, M. Rafailovich, M, Future. Microbiol. 6, (2017) (https://doi.org/10.2217/fmb.11.78).
O.C. Farokhzad, R. Langer, R, Adv. Drug. Deliv. Rev. 58, (2006) (https://doi.org/10.1016/j.addr.2006.09.011).
A. Sabzevari, K. Adibkia, H. Hashemi, A. Hedayatfar, N. Mohsenzadeh, F. Atyabi, M.H. Ghahremani, R. Dinarvand, R. Eur. J. Pharm. Biopharm. 84, (2013) (https://doi.org/10.1016/j.ejpb.2012.12.010).
U. Kadiyalaa, N.A. Kotov, J.S.V. Epps, Curr Pharm Des. 24, 8 (2018) (https://doi.org/10.2174/1381612824666180219130659).
A.B. Djurisic, Y.H. Leung, A.M. Ng, X.Y. Xu, P.K. Lee, N. Degger, N., et al., Nano. Micro. Small 11, 1 (2015) (https://doi.org/10.1002/smll.201303947).
S. Singh, J. Nanosci. Nanotechnol. 10 (7906) (2010) (https://doi.org/10.1166/jnn.2010.3617).
K.A. Ali, A.Z. Abdullah, A.R. Mohamed, Appl. Catal. A. Gen. 537 (2017) (https://doi.org/10.1016/j.apcata.2017.03.022).
J. Huang, Y. Cao, Z. Liu, Z. Deng, W. Wang, Chem. Eng. J. 191, 38-44 (2012) (https://doi.org/10.1016/j.cej.2012.01.057).
A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, V.K, J Colloid Interface Sci. 344 (2010) (https://doi.org/10.1016/j.jcis.2010.01.007).
V. Gupta, R. Jain, A. Nayak, S. Agarwal, M. Shrivastava, M, Mater Sci Eng C. 3(5) (2011) (https://doi.org/10.1016/j.msec.2011.03.006).
K.S. Tan, K.Y. Cheong, J. Nanopart. Res. 15, (2013) (https://doi.org/10.1007/s11051-013-1537-1).
P. Pandey, S. Merwyn, G.S. Agarwal, B.K. Tripathi, S.C. Pant, S.C, J. Nanopart. Res. 14 (2012) (https://doi.org/10.1007/s11051-011-0709-0).
A. Raghunath, E. Perumal, Int. J. Antimicrob. Agents. 49(2), (2017) (https://doi.org/10.1016/j.ijantimicag.2016.11.011).
W. Wu, Z. Wu, T. Yu, C. Jiang, W.S. Kim, Sci Technol Adv Mater. 16 (2015) (https://doi.org/10.1088/1468-6996/16/2/023501).
M. Kobayashi, M., I. Yamashita, U. Uraoka, K. Shiba, S. Tomita, Proc. SPIE 8070, Metamaterials VI, 80700C (17 May 2011) (https://doi.org/10.1117/12.886652).
H.M. Jung, M.J. Chu, J. Mater. Chem. 2 (2014) (https://doi.org/10.1039/C4TC01132E).
Y. Abboud, T. Saffaj, A. Chagraoui, A. El Bouari, K. Brouzi, O. Tanane, B. Ihssane, Appl. Nanosci. 4 (2014) (https://doi.org/10.1007/s13204-013-0233-x).
P. Maheswari, S. Harish, M. Navaneethan, C. Muthamizhchelvan, S. Ponnusamy, Y. Hayakawa, Materials. Sci Eng. C 108 (2020) (https://doi.org/10.1016/j.msec.2019.110457).
P. Vijay Kumar, A. Jafar Ahamed, M. Karthikeyan, SN. Applied. Sciences 1, 1083 (2019) (https://doi.org/10.1007/s42452-019-1113-0).
A. Pugazhendhi, R. Prabhu, K. Muruganantham, R. Shanmuganathan, S. Natarajan, J. Photochem. Photobiol B: Biology 190 (2018) (https://doi.org/10.1016/j.jphotobiol.2018.11.014).
Parthasarathi and Thilagavathi et al, Journal of Textile and Apparel, technology and Management 6, 2 (2009).
Tetiana Tatarchuk, Marianan Myslin, Ivan Mironyuk, et al. J. Alloy. Compd. 819, (2020) (https://doi.org/10.1016/j.jallcom.2019.152945).
K. Saranyaadevi, V. Subha, R.S. Ernest Ravindran, S. Renganathan, I. J. Chem. Tech. Res. 6, 10 (2014).
P. Tiwari, R. Verma, S.N. Kane, Tetiana Tatarchuk, F. Mazaleyrat. Mater. Chem. Phys. 229, 1 (2019) (https://doi.org/10.1016/j.matchemphys.2019.02.030).
B.K. Thakur, A. Kumar, D. Kumar, D, S. African J. Bot. 124, (2019) (https://doi.org/10.1016/j.sajb.2019.05.024).
N. Ajmal, K. Saraswat, A. Bakht, Y. Riadi, M.J. Ahsan, Green. Chem. Lett. Rev. 12, 3 (2019) (https://doi.org/10.1080/17518253.2019.1629641).
Ivan Mironyuk, Tetiana Tatarchuk, Mu Naushad, Hanna Vasylyeva, Igor Mykytyn. J Mole. Liq. 1, 9 (2019) (https://doi.org/10.1016/j.molliq.2019.04.111).
M. Ramesh, M. Anbuvannan, G. Viruthagiri, Spectrochem. Acta. Part A. Mol. Biomol. Spectrosc. 136 (2015) (https://doi.org/10.1016/j.saa.2014.09.105).
S. Vasantharaj, S. Sathiyavimal, M. Saravanan, P. Senthilkumar, K. Gnanasekaran, M. Shanmugavel, E. Manikandan, A. Pugazhendhi, J. Photochem. Photobiol B: Biology 191 (2019) (https://doi.org/10.1016/j.jphotobiol.2018.12.026).
K. Karthik, S. Vijayalakshmi, Anukorn Phuruangrat, V. Revathi, Urvashi Verma., J. Clu. Sci. 30 (2019) (https://doi.org/10.1007/s10876-019-01556-1).
Angel Ezhilarasi, J. Judith Vijaya, K. Kaviyarasu, M. Maaza, A. Ayeshamariam, L. John Kennedy, J. Photochem. Photobiol. B: Biology 164 (2016) (https://doi.org/10.1016/j.jphotobiol.2016.10.003).
K. Karthik, M. Shashank, V. Revathi, Tetiana Tatarchuk, Mol. Cryst. Liq. Cryst. 673 (2018) (https://doi.org/10.1080/15421406.2019.1578495).
S. Krishna Moorthya, C.H. Ashokb, K. Venkateswara Raob, C. Viswanathana, Materials Today: Proceedings. 2 (2015) (https://doi.org/10.1016/j.matpr.2015.10.027).
H. Fouad, H. Li, D. Hosni, Artif. Cells. Nanomed. Biotechnol. 46 (2018) (https://doi.org/10.1080/21691401.2017.1329739).
D. Rehana, D. Mahendiran, R.S. Kumar, A.K. Rahiman, Biomed. Pharmacother 89 (2017) (https://doi.org/10.1016/j.biopha.2017.02.101).
Tura Safawo, B.V. Sandeep, Sudhakar Pola, Aschalew Tadesse, Open Nano. 3 (2018) (https://doi.org/10.1016/j.onano.2018.08.001).
M. Srinivasan, M. Venkatesan, V. Arumugam, G. Natesand, Proce. Biochem. 80 (2019) (https://doi.org/10.1016/j.procbio.2019.02.010).
J. Jeevanandam, Y.S. Chan, M.K. Danquah, New. J. Chem. 41 (2017) (https://doi.org/10.1039/C6NJ03176E).
S.O. Ogunyemi, F. Zhang, Y. Abdallah, M. Zhang, Y. Wang, Y, Nanomed. Biotech. 47(1) (2019) (https://doi.org/10.1080/21691401.2019.1622552)
H. Li, M. Li, G. Qiu, C. Li, H. Qu, B. Yang, J. Alloys. Compd. 632 (2015) (https://doi.org/10.1016/j.jallcom.2015.01.294).
M. Heinemann, B. Eifert, C. Heiliger, Phys. Rev. B. 87, 115111 (2013) (https://doi.org/10.1103/PhysRevB.87.115111).
S. Raut, P.V. Thorat, R. Thakare, Int. J. Sci. Res. 4(5) (2015).
T.R. Tatarchuk, N.D. Paliychuk, M. Bououdina, B. Al- Najar, M. Pacia, W. Macyk, A. Shyichuk. J. Alloys. Compd. 731, (15) (https://doi.org/10.1016/j.jallcom.2017.10.103).
Karthik Kannan, D. Radhika, A.S. Nesaraj, Mohammed Wasee Ahmed, R. Namitha, Mater. Res. Innov. 24(7), 414-421 (2020) (https://doi.org/10.1080/14328917.2019.1706032).
N. Hasan, H.F. Wu, Y.H. Li, M.I. Nawaz, Anal. Bioanal. Chem. 396(8) (2010) (https://doi.org/10.1007/s00216-010-3573-3).
E. Haritha, S.M. Roopan, G. Madhavi, G. Elango, N.A. Al-Dhabi, M.V. Arasu, J. Photochem. Photobiol B: Biology. 162, 28 (2016) (https://doi.org/10.1016/j.jphotobiol.2016.07.010).
R. Aswini, S. Murugesan, Karthik Kannan, Int. J. Environ. Anal. Chem. (2020) (https://doi.org/10.1080/03067319.2020.1718668).
T. Liu, B. Liu, L. Yang, X. Ma, H. Li, et al, Appl. Catal B. Environ. 204 (2017) (https://doi.org/10.1016/j.apcatb.2016.12.011).
N.D. Khiavi, R. Katal, S.K. Eshkalak, S.M. Panah, S. Ramakrishna, H. Jiangyong, Nanomaterials 9, 1011 (2019) (https://doi.org/10.3390/nano9071011).
Tetiana Tatarchuk, Natalia Paliychuk, Rajesh Babu Bitra, Alexander Shyichuk, et al, Desalin. Water. Treat. 150 (2019) (https://doi.org/10.5004/dwt.2019.23751).
C.B.D. MarienT. Cottineau, D. Robert, P. Drogui, Appl. Catal B. 194, 5 (2016) (https://doi.org/10.1016/j.apcatb.2016.04.040).
Y. Zhang, W. Zeng, Mater. Lett. 195, 15 (2017) (https://doi.org/10.1016/j.matlet.2017.02.124).
F. Augusto, E. Carasek, R.G.C. Silva, S.R. Rivellino, A.D. Batista, E.A.J. Martendal, J. Chromatography A. 1217, 16 (2010) (https://doi.org/10.1016/j.chroma.2009.12.033).
S.S. Shinde, C.H. Bhosale K.Y. Rajpure, Catal Rev: Sci. Eng. 55, 1 (2013) (https://doi.org/10.1080/01614940.2012.734202).
I.F. Mironyuk, L.M. Soltys, T. R. Tarachuk, V. I. Tsinurchyn. Phys. Chem. Solid State 21(1), 89 (2020) (https://doi.org/10.15330/pcss.21.1.89-104).
J. Xing, W.Q. Fang, H.J. Zhao H.G. Yang, Chem. Asian J. 7 (2012) (https://doi.org/10.1002/asia.201100772).
F. Xu, Y.T. Shen, T.L. Sun, H.B. Zeng, Y.N. Lu, Nanoscale 3 (2011) (https://doi.org/10.1039/C1NR11033K).
Y. Sun, H. Cheng, S. Gao, Z.H. Sun, et al, Chem. Soc. Rev. 3 (2015) (https://doi.org/10.1039/C4CS00236A).
Y. Xie, Angew Chem Int Ed. 51, 8727 (2012).
B. Seger, A.B. Laursen, P.C.K. Vesborg, Angew Chem Int Ed. 51, 9128 (2012).
T. Linda, S. Muthupoongodi, X. Sahaya Shajan, S. Balakumar, Optik. 127, 120 (2016) (https://doi.org/10.1016/j.ijleo.2016.06.025).
Basma Al-Najar, Mhamed Buoudina, J. Judith Vijaya, Radhika R. Nair, Tetiana Tatarchuk. Sustainable Agricultural Reviews 34 (2019) (https://doi.org/10.1007/978-3-030-11345-2_11).
S.B. Patil, H.S. Bhojya Naik, G. Nagaraju, R. Viswanath, S.K. Rashmi, S.V. Kumar, Mater Chem Phys. 212 (2015) (https://doi.org/10.1016/j.matchemphys.2018.03.038).
Y. Zhao, L. Hai, X. Li, X. Yang, X. Wang, Adv Mater Res. (2011) (https://doi.org/10.4028/www.scientific.net/AMR.197-198.281).
P.C. Udauabhanu, M.A. Nethravathi, D. Pavan Kumar, Suresh, et al, Mater Sci Semicond Process. 33 (2015) (https://doi.org/10.1016/j.mssp.2015.01.034).
M. Aminuzzaman, L.M. Kei, W.H. Liang, Green and stainable Technology AIP Conf. Proc. 1828 (2017) (https://doi.org/10.1063/1.4979387).
M. Sorbium, E.S. Mehr, M.A. Ramazani, S.T. Fardood, Int. J. Environ. Res. 12(9) (2018) (https://doi.org/10.1007/s41742-018-0064-4).
S.S. Muniandy, N.H.M. Kaus, Z.T. Jiang, et al, RSC Adv. 7 (2017) (https://doi.org/10.1039/C7RA08187A).
A.M. Tayeb, D.S. Hussein, American. J. Nano. 3(2), (2015) (https://doi.org/10.12691/ajn-3-2-2).
K. Mageshwari, S.S. Mali, R. Sathyamoorthy, P.S. Patil, Powder Technology. 249 (2013) (https://doi.org/10.1016/j.powtec.2013.09.016).
F. Fazlali, A.R. Mahjoub, R. Abazari, Solid. State. Sci. 48 (2015) (https://doi.org/10.1016/j.solidstatesciences.2015.08.022).
Z. Sabouri, A. Akbari, H.A. Hosseini, M. Khatami, et al, Polyhedron. 178(1) (2020) (https://doi.org/10.1016/j.poly.2020.114351).
S. Kumar, A.K. Ojha, B. Walkenfort, J. Photochem. Photobio B: Biology. 159 (2016) (https://doi.org/10.1016/j.jphotobiol.2016.03.025).
S. Meghana, P. Kabra, S. Chakraborty, N. Padmavathy, RSC Adv. 5 (2015) (https://doi.org/10.1039/C4RA12163E).
R.P. Allaker, J. Dent. Res. 89(11) (2010) (https://doi.org/10.1177/0022034510377794).
I.L. Calderon, A.O. Elias, E.L. Fuentes, G.A. Pradenas, et al, Microbiology 155 (2009) (https://doi.org/10.1099/mic.0.026260-0).
Y.C. Chung, Y.P. Su, C.C. Chen, G. Jia, H.L. Wang, Acta. Pharmacol. Sin. 25 (7) (2004).
J. Niskanen, J. Shan, H. Tenhu, H. Jiang, Colloid. Polym. Sci. 288(5) (2010) (https://doi.org/10.1007/s00396-009-2178-x).
L. Palanikumar, S.N. Ramasamy, C. Balachandran, IET Nanobiotechnol. 8(2) (2014) (10.1049/iet-nbt.2012.0008).
J.M. Yousef, E.N. Dania, J. Health. Sci. 2(4) (2012) (https://doi.org/10.5923/j.health.20120204.04).
M.P. Reddy, A. Venugopal, M. Subrahmanyam, Water Res. 41(2) (2007) (https://doi.org/10.1016/j.watres.2006.09.018).
D. Sharma, M.I. Sabela, K. Suvardhan, et al, J. Photochem. Photobiol B: Biol. 162 (2016) (https://doi.org/10.1016/j.jphotobiol.2016.06.043).
P.P. Arciniegas-Grijalba, M.C. Patino-Portela, L.P. Mosquera-Sanchez, et al, Applied Nanoscience 7 (2017) (https://doi.org/10.1007/s13204-017-0561-3).
G. Ren, D. Hu, E.W. Cheng, M.A. Vargas-Reus, et al, Int. J. Antimicrob. Agents 33(6) (2009) (https://doi.org/10.1016/j.ijantimicag.2008.12.004).
S. Sathiyavimal, S. Vasantharaj, D. Bharathia, M. Saravanan, J. Photochem. Photobio B: Biology 188 (2018) (https://doi.org/10.1016/j.jphotobiol.2018.09.014).
S.M. Hasheminya J. Dehghannya, Particulate Sci. Tech. 38(8) (2019) (https://doi.org/10.1080/02726351.2019.1658664).
M. Safaei, M. Taran, M. Imani, Mater Sci Eng C. 101 (2019) (https://doi.org/10.1016/j.msec.2019.03.108).
R. Ahmadi, A. Tanomand, F. Kazeminava, F.S. Kamounah, A. Ayaseh, Int. J. Nanomed. 14 (2019).
G. Rajakumar, A. Abdul Rahuman, S. Mohana Roopan, V. Gopiesh Khanna, G. Elango, C. Kamaraj, A. Abduz Zahir, K. Velayutham, Spectrochim Acta A. 91 (2012) (https://doi.org/10.1016/j.saa.2012.01.011).
S. Jebril, R.K.B. Jenana, C. Dridi, Mater. Chemis. Phy. 248(1) (2020) (https://doi.org/10.1016/j.matchemphys 2020.122898).
R. Rekha, M. Divya, M. Govindarajan, N.S. Alharbid, J. Photochemi. Photobio B. Biology 199, 111620 (2019) https://doi.org/10.1016/j.jphotobiol.2019.111620.
Y.W. Baek, Y.J. An, Sci Total Environ. 409(8) (2011) (https://doi.org/10.1016/j.scitotenv.2011.01.014).
S. Rakshit, S. Ghosh, S. Chall, S.S Mati, RSC Adv. 3 (2013) (https://doi.org/10.1039/C3RA42628A).
M.I. Din, A.G. Nabi, A. Rani, A. Aihetasham, M. Mukhtar, Environ. Nanotechnol. Monit. Manag. 9 (2018) (https://doi.org/10.1016/j.enmm.2017.11.005).
K. Alamelu, K. Ramasami, M.V. Reddy, R. Geetha, R. Balakrishna, Mat. Sci. Semicon. Proces. 40 (2015) (https://doi.org/10.1016/j.mssp.2015.06.017).
Z.X. Tang, Z. Yu, Z.L. Zhang, X.Y. Zhang, Quim Nova. 36 (2013) (http://dx.doi.org/10.1590/S0100-40422013000700002).
I.I. Muhamad, S.A. Asgharzadehahmadi, D.N.A. Zaide, E. Supriyanto, Inter. J. Biol. Biomed. Eng. 3(7) (2013).
A. Almontasser, A. Parveen, A. Azam, IOP Conf Ser Mater Sci. Eng. 577 (2019) (https://doi.org/10.1088/1757-899X/577/1/012051).
G. Sharmila, C. Muthukumaran, E. Sangeetha, H. Saraswathi, Nano-Structures & Nano-Objects. 20 (2019) (https://doi.org/10.1016/j.nanoso.2019.100380).
H. Tong, S.X. Ouyang, Y.P. Bi, Adv. Mater. 24 (2012) (https://doi.org/10.1002/adma.201102752).
Karthik Kannan, Devi Radhika, Kishor Kumar Sadasivuni, Kakarla Raghava Reddy, Anjanapura V. Raghu, Adv. Colloid Interface Sci. 281, 102178 (2020) (https://doi.org/10.1016/j.cis.2020.102178).
Karthik Kannan, D. Radhika, Maria P. Nikolova, V. Andal, Kishor Kumar Sadasivuni, L. Sivarama Krishna, Optik, 218, 165112 (2020) (https://doi.org/10.1016/j.ijleo.2020.165112).
Karthik Kannan, D. Radhika, Maria P. Nikolova, Kishor Kumar Sadasivuni, Hakimeh Mahdizadeh, Urvashi Verma, Inorg. Chem. Commun. 113, 107755 (2020) (https://doi.org/10.1016/j.inoche.2019.107755).
K. Kannan, D. Radhika, S. Vijayalakshmi, K.K. Sadasivuni, A. A. Ojiaku, U. Verma, Int. J. Environ. Anal. Chem. 1 (2020) (https://doi.org/10.1080/03067319.2020.1733543).
P. Surendran, A. Lakshmanan, S.S. Priya, K. Balakrishnan, P. Rameshkumar, K. Kannan, P. Geetha, T.A. Hegde, G. Vinitha, Nano-Structures & Nano-Objects. 24, 100589 (2020) (https://doi.org/10.1016/j.nanoso.2020.100589).
S. Pandiyan, L. Arumugam, S.P. Srirengan, R. Pitchan, P. Sevugan, K. Kannan, G. Pitchan, T.A. Hegde, V. Gandhirajan, ACS Omega. (2020) acsomega.0c03290 (https://doi.org/10.1021/acsomega.0c03290).
K.Kannan, M.H. Sliem, A.M. Abdullah, K.K. Sadasivuni, B. Kumar, Catalysts 10 10, 549 (2020) (https://doi.org/10.3390/catal10050549).
Karthik Kannan, D. Radhika, A.S. Nesaraj, Kishor Kumar Sadasivuni, L. Sivarama Krishna, Inorg. Chem. Commun.122, 108307 (2020) (https://doi.org/10.1016/j.inoche.2020.108307).
Karthik Kannan, D. Radhika, A.S Nesaraj, Kishor Kumar Sadasivuni, Kakarla Raghava Reddy, Deepak Kasai, Anjanapura V. Raghu, Mater. Sci. Energy Technol. 3, 853 (2020) (https://doi.org/10.1016/j.mset.2020.10.008).