Two-dimensional based hybrid materials for photocatalytic conversion of carbon dioxide into hydrocarbon fuels: A mini review
DOI:
https://doi.org/10.15330/pcss.22.1.132-140Keywords:
2D nanomarials, characterization;, photocatalytic carbon dioxide conversion;, fuelsAbstract
Carbon dioxide conversion to chemicals and fuels based on two-dimensional based hybrid materials will present a thorough discussion of the physics, chemistry, and electrochemical science behind the new and important area of materials science, energy, and environmental sustainability. The tremendous opportunities for two-dimensional based hybrid materials in the photocatalytic carbon dioxide conversion field come up from their huge number of applications. In the carbon dioxide conversion field, nanostructured metal oxide with a two-dimensional material composite system must meet assured design and functional criteria, as well as electrical and mechanical properties. The whole content of the proposed review is anticipated to build on what has been learned in elementary courses about synthesizing two-dimensional nanomaterials, metal oxide with composites, carbon dioxide conversion requirements, uses of two-dimensional materials with nanocomposites in carbon dioxide conversion as well as fuels and the major mechanisms involved during each application. The impact of hybrid materials and synergistic composite mixtures which are used extensively or show promising outcomes in the photocatalytic carbon dioxide conversion field will also be discussed.
References
H. Xu, Y. Li, H. Huang, Spatial research on the effect of financial structure on CO2 emission Energy Procedia, 118 (Supplement C) (2017) 179-183. https://doi.org/10.1016/j.egypro.2017.07.037
R. Aswini, S. Murugesan, Karthik Kannan, International Journal of Environmental Analytical Chemistry, (2020) DOI: 10.1080/03067319.2020.1718668
P.V.V. Prasad, J.M.G. Thomas, S. Narayanan, Global warming effects Encyclopaedia of applied plant sciences (second ed.), Academic Press, Oxford (2017) 289-299.
P.M. Cox, R.A. Betts, C.D. Jones, S.A. Spall, I.J. Totterdell, Nature, 408 (2000) 184-187. https://doi.org/10.1038/35041539
Wenjun Zhang, Yi Hu, Lianbo Ma, Guoyin Zhu, Peiyang Zhao, Xiaolan Xue, Renpeng Chen, Songyuan Yang, Jing Ma, Jie Liu, Zhong Jin, Nano Energy, 53 (2018) 808-816. https://doi.org/10.1016/j.nanoen.2018.09.053.
S. Garg, M. Li, A.Z. Weber, L. Ge, L. Li, V. Rudolph, G. Wang, T.E. Rufford, J Mater Chem A, 8 (2020), 1511-1544. https://doi.org/10.1039/C9TA13298H
F. Xu, K. Meng, B. Zhu, H. Liu, J. Xu, J. Yu, Adv. Funct. Mater. 29 (2019) 1904256. https://doi.org/10.1002/adfm.201904256
C. Bie, B. Zhu, F. Xu, L. Zhang, J. Yu, Adv. Mater., 31 (2019) 1902868. https://doi.org/10.1002/adma.201902868
J. Yuan, M.-P. Yang, W.-Y. Zhi, H. Wang, H. Wang, J.-X. Lu, J Carbon Dioxide Util, 33 (2019) 452-460.
Z. Zeng, Y. Yan, J. Chen, P. Zan, Q. Tian, P. Chen, Adv. Funct. Mater. 29 (2019) 1806500. https://doi.org/10.1002/adfm.201806500
S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, Adv. Funct. Mater. 28 (2018) 1800136. https://doi.org/10.1002/adfm.201800136
Karthik Kannan, D. Radhika, A.S. Nesaraj, Mohammed Wasee Ahmed, R. Namitha, Mater. Res. Innov. 24:7 (2020) 414-421, DOI: 10.1080/14328917.2019.1706032
R. Murugesan, S. Sivakumar, K. Karthik, P. Anandan, M. Haris, Current Applied Physics, 19 (10) (2019) 1136-1144. DOI: 10.1016/j.cap.2019.07.008
M. Naguib, J. Halim, J. Lu, K. M. Cook, L. Hultman, Y. Gogotsi, and M. W. Barsoum, J. Am. Chem. Soc. 135(43) (2013) 15966. https://doi.org/10.1021/ja405735d
D Radhika, Karthik Kannan, A.S Neseraj, R Namitha, Mater. Res. Innov. 24:7 (2020) 395-401. DOI: 10.1080/14328917.2019.1686858
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M. W. Barsoum, ACS Nano 6(2) (2012) 1322. https://doi.org/10.1021/nn204153h
J. Halim, M. R. Lukatskaya, K. M. Cook, J. Lu, C. R. Smith, L. A. Naslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, M. W. Barsoum, Chem. Mater. 26(7) (2014) 2374. https://doi.org/10.1021/cm500641a
M. Ghidiu, M. Naguib, C. Shi, O. Mashtalir, L. M. Pan, B. Zhang, J. Yang, Y. Gogotsi, S. J. L. Billinge, and M. W. Barsoum, Chem. Commun. 50(67) (2014) 9517. https://doi.org/10.1039/C4CC03366C
Surachet Duanghathaipornsuk, Sushil Kanel , Emily F. Haushalter, Jessica E. Ruetz, Dong-Shik Kim, Nanomaterials 10 (2020) 1136. https://doi.org/10.3390/nano10061136
Marin Kovaˇci´c, Klara Perovi´c, Josipa Papac, Antonija Tomi´c, Lev Matoh, Boštjan Žener , Tomislav Brodar, Ivana Capan, Angelja K. Surca, Hrvoje Kuši´c, Urška Lavrenˇciˇc Štangar, Ana Lonˇcari´c Boži´c, Materials 13 (2020) 1621. https://doi.org/10.3390/ma13071621
Reyhaneh Kaveh, Maryam Mokhtarifar, Mojtaba Bagherzadeh, Andrea Lucotti, Maria Vittoria Diamanti, MariaPia Pedeferri, Molecules 25 (2020) 2996. https://doi.org/10.3390/molecules25132996
Karthik Kannan, Aboubakr M. Abdullah, Kishor Kumar Sadasivuni, Bijandra Kumar, Catalysts 10 (2020) 495. https://doi.org/10.3390/catal10050495
Haifeng Zhao, Jing Lv, Junshan Sang, Li Zhu, Peng Zheng, Greg. L. Andrew, Linghua Tan, Materials 11 (2018) 2457. https://doi.org/10.3390/ma11122457
Karthik Kannan, Mostafa H. Sliem, Aboubakr M. Abdullah, Kishor Kumar Sadasivuni, Bijandra Kumar Catalysts 10 (2020) 549. https://doi.org/10.3390/catal10050549
Ziyu Yao, Huajun Sun, Huiting Sui, Xiaofang Liu, Nanomaterials 10 (2020) 452. https://doi.org/10.3390/nano10030452
Sifani Zavahir, Patrik Sobolˇciak, Igor Krupa, Dong Suk Han, Jan Tkac, Peter Kasak, Nanomaterials 10 (2020) 1419. https://doi.org/10.3390/nano10071419
Panpailin Seeharaja, Panyata Kongmuna, Piyalak Paiploda, Saowanee Prakobmita, Chaval Sriwonga, Pattaraporn Kim-Lohsoontornb, Naratip Vittayakorn, Ultrasonics - Sonochemistry 58 (2019) 104657. https://doi.org/10.1016/j.ultsonch.2019.104657
Jingxiang Low, Liuyang Zhang, Tong Tong, Baojia Shen, Jiaguo Yu, Journal of Catalysis 361 (2018) 255–266. https://doi.org/10.1016/j.jcat.2018.03.009
Y. Zhao, Y. Wei, X. Wu, H. Zheng, Z. Zhao, J. Liu, J. Li, Appl. Catal. B Environ. 226 (2018) 360-372. https://doi.org/10.1016/j.apcatb.2017.12.071
S. Arshadi-Rastabi, J. Moghaddam, M. Reza Eskandarian, J. Ind. Eng. Chem. 22 (2015) 34-40. https://doi.org/10.1016/j.jiec.2014.06.022
S. Sun, M. Watanabe, P. Wang, T. Ishihara, ACS Appl. Energy Mater. 2 (2019)2104-2112. https://doi.org/10.1021/acsaem.8b02153
R. Gusain, P. Kumar, O.P. Sharma, S.L. Jain, O.P. Khatri, Appl. Catal. B Environ. 181 (2016) 352-362. https://doi.org/10.1016/j.apcatb.2015.08.012
F. Li, L. Zhang, J. Tong, Y. Liu, S. Xu, Y. Cao, S. Cao, Nanomater. Energy 27 (2016) 320-329. https://doi.org/10.1016/j.nanoen.2016.06.056
L.Y. Lin, Y. Nie, S. Kavadiya, T. Soundappan, P. Biswas, Chem. Eng. J. 316 (2017) 449-460. https://doi.org/10.1016/j.cej.2017.01.125
H. Jung, K.M. Cho, K.H. Kim, H.-W. Yoo, A. Al-Saggaf, I. Gereige, H.-T. Jung, ACS Sustain. Chem. Eng. 6 (2018) 5718-5724.
Fei He, Bicheng Zhu, Bei Cheng, Jiaguo Yu, Wingkei Ho, Wojciech Macyk, Applied Catalysis B: Environmental, 272 (2020) 119006. https://doi.org/10.1016/j.apcatb.2020.119006
Muhammad Tahir, Energy Fuels 34 (2020) 3540−3556. https://doi.org/10.1021/acs.energyfuels.9b04393
MironyukI., SoltysL., Tatarchuk T., Tsinurchyn V. Physics and Chemistry of Solid State, 21(2) (2020) 300-311. https://doi.org/10.15330/pcss.21.2.300-311
DanyliukN., TatarchukT., ShyichukA. Physics and Chemistry of Solid State, 21(4) (2020) 727-736. https://doi.org/10.15330/pcss.21.4.727-736
DanyliukN. V., TatarchukT. R., Shyichuk A. V. Physics and Chemistry of Solid State, 21(2) (2020) 338-346. https://doi.org/10.15330/pcss.21.2.338-346