Manufacturing and Processing of Carbon Nanotubes for H2 Storage
DOI:
https://doi.org/10.15330/pcss.22.2.209-216Keywords:
CNT, Solvothermal, Raman analysis, Hydrogen storageAbstract
In pursuit of manufacturing of carbon nanotubes (CNTs) in good yield at lower temperatures, a mixture of d-block elements such as Iron, Nickel, and Cobalt was expected to be advantageous because of the high yield and low temperature (at 220 - 250° C) synthesis. The physical state and aggregation of these catalyst particles in the reaction medium have been found to play an interesting role in obtaining CNTs at better yield. Carbon nanotubes have been successfully produced by an uncomplicated two-step solvothermal method between sodium and dichlorobenzene via Ni/Fe/Co as catalyst precursor. The dependence of yield of CNTs on the catalyst system was determined via different ratios of catalysts and at various other experimental conditions such as different heating temperatures, different durations of heating. The X-ray powder diffraction study has indicated the graphite kind of the products. Microscopic characterizations (SEM and TEM) implied us the diameters of carbon nanotubes are 10-14 nm. Raman spectroscopy shows the presence of graphitized carbon in carbon nanotubes. Significant influence by the heating temperature and heating duration has been observed on the product yield.
References
V. Mishra, Prashant Kesharwani Jain, Crit. Rev. Ther. Drug Carrier Syst. 35, 293 (2018) https://doi.org/10.1615/critrevtherdrugcarriersyst.2018014419.
Fan. Kai, Li. Jihao, Li. Linfan, Li. Jingye, Hu. Jun, Peretz. Sivan, Oren Regev, Fuller Nanotub Car N. 26, 226 (2018) https://doi.org/10.1080/1536383X.2018.1428800.
Shiv Kumar Prajapati.; Akanksha Malaiya.; Payal Kesharwani.; Deeksha Soni.; Aakanchha Jain, Drug Chem Toxicol. 7, 1 (2020) https://doi.org/10.1080/01480545.2019.1709492.
Kunal Bhattacharya, P. Sourav Mukherjee, Audrey Gallud, C. Seth Burkert, Silvia Bistarelli, Stefano Bellucci, Massimo Bottini, Alexander Star, Bengt Fadeel, Nanomadicine 12, 333 (2016) https://doi.org/10.1016/j.nano.2015.11.011.
H.P. Wante, S. L. Yap, J. Aidan, P. Saikia, J. Mater. Environ. Sci. 11, 713 (2020).
Huilin Wang, Xitong Liang, Jiutian Wang, Shengjian Jiao, Dongfeng Xue, Nanoscale 12, 14 (2020) https://doi.org/10.1039/C9NR07008G.
Somayeh Tajik, Hadi Beitollahi, Fariba Garkani Nejad, Mohadeseh Safaei, Kaiqiang Zhang, Quyet Van Le, Rajender S. Varma, Ho Won Jang, RSC Advances 10, 21561 (2020) https://doi.org/10.1039/D0RA03672B.
Man Mohan, E. Vinod Kumar Sharma, V. Anil Kumar, Gayathri, J. Energy stor. 1, e-35 (2019) https://doi.org/10.1002/est2.35.
M.M. Mohideen, Liu. Yong, Seeram Ramakrishna, Appl Energy. 257 114027 (2020) https://doi.org/10.1016/j.apenergy.2019.114027.
Renju Zacharia, Sami ullah Rather, J. Nanomat. 914845, (2015) https://doi.org/10.1155/2015/914845.
Souvik Ghosh, Ambarish Ghosh, Nat. commun. 10, 4191 (2019) https://doi.org/10.1038/s41467-019-12217-2.
Ritu Sharma, Anup Kumar Sharma, Varshali Sharma, Eileen Harkin-Jones, 2, 1094017, (2015) https://doi.org/10.1080/23311916.2015.1094017.
A. Raid Ismail, H. Mayyadah Mohsin, K. Abdulrahman Ali, I. Khaleel Hassoon, Sule Erten-Elab, Physica E: Low-dimensional Systems and Nanostructures 119, 113997 (2020) https://doi.org/10.1016/j.physe.2020.113997.
Xiao-Di Wang, K. Vinodgopal, Gui-Ping Dai, Perspective of Carbon Nanotubes (2019. https://doi.org/10.5772/intechopen.86995.
S. Iijima, Nature 354, 56 (1991) https://doi.org/10.1038/354056a0.
Y. Gogotsi, J.A. Libera, M. Yoshimura, J. Mater. Res. 15, 2591 (2011) https://doi.org/10.1557/JMR.2000.0370.
J.M. Calderon-Moreno, M. Yoshimura, J. Am. Chem. Soc. 123, 741 (2001) https://doi.org/10.1021/ja003008h.
P.Al. Darabont, K. Nemes–Incze, L. Kertesza, A.A. Tapasztoa, Z. Koosa, Z. Osvatha, Z. Sarkozi, E.Z. Vertesya, L.P. Horvatha Biro, J Optoelectron Adv mat 7, 631 (2005).
Z.H. Yuan, H. Huang, H.Y. Dang, J.E. Cao, B.H. Hu, S.S. Fan, Appl. Phys. Lett. 78, 3127 (2001) https://doi.org/10.1063/1.1372205.
Huang Fuling, Cao Chuanbao, Zhu Hesun, Chinese Sci Bull. 50, 626 (2005) https://doi.org/10.1360/03wb0216.
D. Ezekiel Dikio, Force Tefo Thema, W. Charity Dikio, M. Fanyana Mtunzi, International Journal of Nanotechnology and Applications 4, 117 (2010).
J.W. Liu, M.W. Shao, X.Y. Chen, W.C. Yu, X.M. Liu, Y.T. Qian, J. Am. Chem. Soc. 27, 8088 (2003) https://doi.org/10.1021/ja035763b.
C.Y. Lee, H.T. Chiu, C.W. Peng, M.Y. Yen, Y.H. Chang, C.S. Liu, Adv. Mater. 13, 1105 (2001) https://doi.org/10.1002/1521-4095.
G. Hu, M. Cheng, D. Ma, X. Bao, Chem. Mater. 15, 1470 (2003) https://doi.org/10.1021/cm0209362.
Y. Jiang, Y.Wu, S. Zhong, C. Xu, W. Yu, Y. Xie, Y. Qian, J. Am. Chem. Soc. 122, 12383 (2000) https://doi.org/10.1021/ja002387b.
Wenzhong Wang, S. Kunwar, J.Y. Huang, D.Z. Wang, Z.F. Ren, Nanotech 16, 21 (2005) https://doi.org/10.1088/0957-4484/16/1/005.
Cong. Xin, Liu. Xue-Lu, Lin. Miao-Ling, Tan. Ping-Heng, 4, 13 (2020) https://doi.org/10.1038/s41699-020-0140-4.
A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, Kong. Large Area, Nano Lett. 9, 30 (2009) https://doi.org/10.1021/nl801827v.
Yu-Chen Hsieh, Yu-Chuan Chou, Chun-Ping Lin, Tung-Feng Hsieh, Chi-Min Shu, Aerosol and Air Qual Res 10, 212 (2010. https://doi.org/10.4209/aaqr.2009.08.0053.
Didier Astruc, Nanoparticles and Catalysis 1 (2008) https://doi.org/10.1002/9783527621323.ch1.
L.B. Avdeeva, T.V. Reshetenko, R. Ismagilov, V.A. Likholobov, Appl. Catal. 53, 228 (2002) https://doi.org/10.1016/S0926-860X(01)00959-0.
Nur Shamimie Nadzwin Hasnan, Sharifah Najiha Timmiati, Kean Long Lim, Zahira Yaakob, Nur Hidayatul Nazirah Kamaruddin, Lee Peng The, Mater Renew Sustain Energy 9, 8 (2019) https://doi.org/10.1007/s40243-020-00167-5.
M.S. Rahman, E. Croiset, R.R. Hudgins, Top Catal. 37, 137 (2006) https://doi.org/10.1007/s11244-006-0015-8.
Chen. Luning, Qi. Zhiyuan, Zhang. Shuchen, Ji. Su, A. Gabor Somorjai, Catalysts 10, 858 (2020) https://doi.org/10.3390/catal10080858.
R. Colin Park, K. Terry Baker, J. Phys. Chem. B. 102, 5168 (1998) https://doi.org/10.1021/jp981210p.
R. Namitha, Devi Radhika, Journal of research, analysis and development 22, 01 (2017).
R. Namitha, Devi Radhika, G. Krishnamurthy, Issues of Chemistry and Chemical Technology 3, 30 (2019).
J. Theerthagiri, G. Durai, T. Tatarchuk, M. Sumathi, P. Kuppusami, Jiaqian Qin, Myong Yong Choi, Ionics 26(4), 2051 (2020) https://doi.org/10.1007/s11581-019-03330-9.
T. Rajesh Kumar, P. Prabukanthan, G. Harichandran, J. Theerthagiri, A. Meera Moydeen, G. Durai,
P. Kuppusami, T. Tatarchuk, Journal of Materials Science: Materials in Electronics 29(7), 5638 (2018) https://doi.org/10.1007/s10854-018-8533-2.
K. Kannan, M.H. Sliem, A.M. Abdullah, K.K. Sadasivuni, B. Kumar, Catalysts 10, 549 (2020) https://doi.org/10.3390/catal10050549.
K. Kannan, K.K. Sadasivuni, A. Abdullah, B. Kumar, Catalysts 10, 495 (2020) https://doi.org/10.3390/catal10050495.
M. Ibrahim, K. Kannan, H. Parangusan, S. Eldeib, O. Shehata, M. Ismail, R. Zarandah, K.K. Sadasivuni, Coatings 10, 783 (2020) https://doi.org/10.3390/coatings10080783.
K. Karthik, S. Dhanuskodi, AIP Conference Proceedings 1731, 050021 (2016) https://doi.org/10.1063/1.4947675.
T. Rajesh Kumar, P. Prabukanthan, G. Harichandran, J. Theerthagiri, T. Tatarchuk, T Maiyalagan, Gilberto Maia, M. Bououdina, Journal of Solid State Electrochemistry 22(4), 1197 (2018) https://doi.org/10.1007/s10008-017-3865-z.
D. Radhika, Karthik Kannan, A.S Neseraj, R Namitha, Mater. Res. Innov. 24:7, 395 (2020) https://doi.org/10.1080/14328917.2019.1686858.
Karthik Kannan, D. Radhika, A.S. Nesaraj, Mohammed Wasee Ahmed & R. Namitha, Mater. Res. Innov. 24(7), 414 (2020) https://doi.org/10.1080/14328917.2019.1706032.