Interaction of Light with matter: nonclassical phenomenon

Authors

  • Pramila Shukla Amity University
  • Shivani A. Kumar Amity University
  • Shefali Kanwar Amity University

DOI:

https://doi.org/10.15330/pcss.23.1.5-15

Keywords:

Interaction of light with matter, coherent states, squeezing, antibunching, rabi oscillations, collapses and revivals

Abstract

Matter and light interaction has very important applications in classical as well as in nonclassical field. In classical mechanics charged particle interact with oscillating field. In quantum mechanics interaction of light is with quantum states. In this paper we review important nonclassical phenomenon and their applications have been observed in last few years.

References

Jin-Shen Peng and Gao Xiang, Introduction to modern Quantum optics, World Scientific, Singapore, (1998).

E. Schrodinger The continuous transition from micro to macro-mechanics. Naturwiss. 1927. 19, P. 644-666.

Klauder J. R. The action option and a Feynman quantization of spinor fields in terms of ordinary c-number. Ann. Phys. 11, 123-168 (1960), https://doi.org/10.1016/0003-4916(60)90131-7.

Mehta C. L., E.C.G. Sudarshan Relation between quantum and semiclassical description of optical coherence. Phys. Rev. 138, B274-80 (1965), https://doi.org/10.1103/PhysRev.138.B274.

J. R. Klauder, J. Mc. Kenna, D. G. Currie On “diagonal” coherent state representations of quantum mechanical density matrices. J. Math. Phys. 6, 734 (1968), https://doi.org/10.1063/1.1704330.

Glauber R. J. The quantum theory of optical coherence. Phys. Rev. 130, 2529 – 2539 (1963), https://doi.org/10.1103/PhysRev.130.2529.

E. C. G. Sudarshan Equivalence of semiclassical and quantum mechanical description of statistical light beam. Phys. Rev. Lett. 10, 277-279 (1963), https://doi.org/10.1103/PhysRevLett.10.277.

R.J. Glauber Coherent and incoherent state of the radiation field. Phys. Rev. 131, 2766 – 2788 (1963), https://doi.org/10.1103/PhysRev.131.2766.

R.J. Glauber Photon correlations. Phys. Rev. Lett. 10, 84-86 (1963), https://doi.org/10.1103/PhysRevLett.10.84.

K. E. Cahil Coherent state representation for the photon density operator. Phys. Rev. 138, B1566-576 (1965), https://doi.org/10.1103/PhysRev.138.B1566.

U. M. Titulaer, R. J. Glauber Correlation function for coherent field. Phys.Rev. 140, B676 (1965), https://doi.org/10.1103/PhysRev.140.B676.

B. R. Mollow, R. J. Glauber Quantum theory of parametric amplification-I. Phys. Rev. 160, 1076-1096 (1967), https://doi.org/10.1103/PhysRev.160.1076.

B. R. Mollow, R. J. Glauber Quantum theory of parametric amplification-II. Phys. Rev. 160, 1097-1108 (1967), https://doi.org/10.1103/PhysRev.160.1097.

H. Prakash, N.Chandra Coherence and nonlinear scattering of radiation. Phys. Rev. A 4, 746 (1971), https://doi.org/10.1103/PhysRevA.4.796.

M. Hillery Classical pure states are coherent states Phys. Lett. 111A, 409-411 (1985).

H. Prakash and N. Chandra. Coherence and nonlinear scattering of radiation. Phys. Lett. 31A, 331-332 (1979), https://doi.org/10.1016/0375-9601(70)90886-8.

R. H Dicke Coherence in spontaneous radiation process. Phys. Rev. 93, 99-110 (1954), https://doi.org/10.1103/PhysRev.93.99.

L. Mandel, E.Wolf Coherence properties of optical field. Rev. Mod. Phys. 37, 231-287 (1965), https://doi.org/10.1103/RevModPhys.37.231.

B. Roy, P. Roy New nonlinear coherent states and some of their nonclassical properties. J. Opt. B: Quantum Semiclass. Opt. 2, 65 (2000), https://doi.org/10.1088/1464-4266/2/1/311.

Wu. Wei, An Wu. Ling, Quantum statistical properties of the generalized excited even and odd coherent state J. Opt. B.: Qun. Sem. Opt. 5, 364-369 (2003), https://doi.org/10.1088/1464-4266/5/4/307.

V. Fock Verallgemeinerung und Lösung der Diracschen statistischen Gleichung Z. Phys. 49, 339-357 (1928), https://doi.org/10.1007/BF01337923.

K. E. Cahill, R. J. Gluaber Density operator & Quasiprobability distributions Phys. Rev. 177, 1882-1902 (1969), https://doi.org/10.1103/PhysRev.177.1882.

C. M. Caves Quantum-mechanical noise in an interferometer Phys. Rev. D. 23, 1693-1708 (1981), https://doi.org/10.1103/PhysRevD.23.1693.

A. B. Matsko et al. Vacuum squeezing in atomic media via self rotation. Phys. Rev. A. 66, 043815-10 (2002), https://doi.org/10.1103/PhysRevA.66.043815.

M. Rosenbluh, R. M. Shelby Squeezed optical solitions. Phys. Rev. Lett. 66, 153-156 (1991), https://doi.org/10.1103/PhysRevLett.66.153.

B.C. Sanders, S.M. Barnett., P.L. Knight Phase variables and squeezed states. Opt. Commn. 58, 290-294 (1986), https://doi.org/10.1016/0030-4018(86)90453-0.

E.S. Polzik et al. Quantum noise of an atomic spin polarization measurement. Phys. Rev. Lett. 80, 3487-3490 (1998), https://doi.org/10.1103/PhysRevLett.80.3487.

A. Messikh et al. Spin squeezing as a measure of entanglement in a two qubit System. J. Opt. B: Qun. Sem. Opt. 5, 64301-1-4 (2003), 10.1103/PhysRevA.68.064301.

A. Kuzmich et al. Spin squeezing in an ensemble of atoms illuminate with squeezed light. Phys. Rev. Lett. 79, 4782-4785 (1977), https://doi.org/10.1103/PhysRevLett.79.4782.

E. H. Kennard Quantum mechanics of linear oscillators. Z. Phys. 44, 326-352 (1927).

D. Stoler Equivalence classes of minimum uncertainty packet I. Phys. Rev. D. 1, 3217-3219 (1970), https://doi.org/10.1103/PhysRevD.1.3217.

D. Stoler Equivalence classes of minimum uncertainty packet I. Phys. Rev. D. 4, 1925-1930 (1971), https://doi.org/10.1103/PhysRevD.4.1925.

P. Yuen Two photon coherent states of radiation field. Phys. Rev. A. 13, 2226-2243 (1976), https://doi.org/10.1103/PhysRevA.13.2226.

R. E. Slusher, Yurke H. Bernard Squeezed light for coherent communication. IEEE 8, 466-477 (1990), https://doi.org/10.1109/50.50742.

H. P.Yuen, J. H. Shapiro Optical communication with two photon coherent states –Part I: quantum state propagation and quantum noise reduction. IEEE Trans. Inform. Theory IT 24, 657-668 (1978), https://doi.org/10.1109/TIT.1978.1055958.

S. L. Braunstein, H. J. Kimble Teleportation of continuous quantum variables Phys. Rev. Lett. 80, 869-872 (1998), https://doi.org/10.1103/PhysRevLett.80.869.

Takei et al. Experimental demonstration of quantum teleportation of squeezed light. Phys. Rev. A. 72, 042304 (2005), https://doi.org/10.1103/PhysRevA.72.042304.

S. Benjamin Sending entanglement through noisy quantum channel. Phys. Rev. A. 54, 2614-2628 (1996), https://doi.org/10.1103/PhysRevA.54.2614.

C. Zhang et al. Quantum teleportation of light beams. Phys. Rev. A. 67, 033802 1-16 (1996), https://doi.org/10.1103/PhysRevA.67.033802.

C. M. Caves Quantum mechanical noise in an interferometer. Phys. Rev. D. 23, 1693-1708 (1981), https://doi.org/10.1103/PhysRevD.23.1693.

S. L. Braunstein, H. J. Kimble Dense coding for continuous variables. Phys. Rev. A. 61, 04230 (2000), https://doi.org/10.1103/PhysRevA.61.042302.

J. Kempe. Multiparticle entanglement and its application to cryptography. Phys. Rev. A 60, 910-916 (1999), https://doi.org/10.1103/PhysRevA.60.910.

A. A. Berni, T. Gehring, B M. Nielsen, V. Händchen, M. G. A. Paris, U. L. Andersen Ab initio quantum-enhanced optical phase estimation using real-time feedback control. Nature Photonics 9(9), 577-581 (2015), https://doi.org/10.1038/nphoton.2015.139.

N. C. Menicucci et al. Universal Quantum Computation with Continuous-Variable Cluster States. Phys. Rev. Lett. 2006. 97, P. 110501, https://doi.org/10.1103/PhysRevLett.97.110501.

N. Treps et al. Surpassing the Standard Quantum Limit for Optical Imaging Using Nonclassical Multimode Light. Phys. Rev. Lett. 88, 203601 (2002), https://doi.org/10.1103/PhysRevLett.88.203601.

V.Giovannetti, S. Lloyd, L. Maccone Quantum-enhanced positioning and clock synchronization. Nature 412, 417-419 (2001), https://doi.org/10.1038/35086525.

H. J. Kimble, D. F. Walls Squeezed states of the electromagnetic field: Introduction to feature issue. J. Opt. Soc. Am. B. 4(10), 1449 (1987).

R. Loudon, P. L. Knight Special issue on squeezed light. J. Mod. Opt. 34, 709-759 (1987), https://doi.org/10.1080/09500348714550721.

H.A. Haus, J.A. Mullen Quantum noise in linear amplifier. Phys. Rev. 128, 2407-2413 (1962), https://doi.org/10.1103/PhysRev.128.2407.

G. Milburn, D.F. Walls Production of squeezed states in a degenerate parametric amplifier. Optics Communication 39, 401-404 (1981), https://doi.org/10.1016/0030-4018(81)90232-7.

Brown Lowell S. Squeezed states and quantum mechanical parametric amplifier. Phys. Rev. A 36, 2463 (1987), https://doi.org/10.1103/PhysRevA.36.2463.

D. David Crouch Broadband squeezing via degenerate parametric amplifier. Phys. Rev. A 38, 508 (1988), https://doi.org/10.1103/PhysRevA.38.508.

D. David Crouch, S. L. Braunstein Limitation of squeezing via degenerate parametric amplifier. Phys. Rev. A 38, 4696 (1988), https://doi.org/10.1103/PhysRevA.38.4696.

Ekert Artur, Knight Peter L. Nonstationary squeezing in a parametric amplifier. Optics communications 71, 107 (1989).

Bali Samir. The role of quantum jumps in the squeezing of resonance fluorescence from short lived and long lived atoms J. Opt. B.: Quan. Sem. Opt. 6, S706-S711 (2004).

Sizmann A. et al. Observation of amplitude squeezing of the up converted mode in second harmonic generation. Opt. Comm. 80, 138-142 (1990), https://doi.org/10.1016/0030-4018(90)90375-4.

M. Kozierowski Higher order squeezing in kth harmonic generation. Phys. Rev. A 34, 3474-3477 (1986), https://doi.org/10.1103/PhysRevA.34.3474.

Meystre P., Zubairy M. S. Squeezed states in Jaynes Cumming model. Phys. Lett. 89A, 390-392 (1982), https://doi.org/10.1016/0375-9601(82)90330-9.

F.El-Orany, A.Obada On the evolution of superposition of squeezed displaced number states with the multiphoton Jaynes Cumming model. J. Opt. B. Quantum Semiclass. Opt. 5, 60 (2003), https://doi.org/10.1088/1464-4266/5/1/309.

P.Grünwald, W.Vogel Enhanced squeezing by absorption. Physica Scripta 91, 4 (2016), https://doi.org/10.1088/0031-8949/91/4/043001.

R. E. Slusher., L.W. Holber et al. Observation of squeezed state generated by four wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409-2412 (1985), https://doi.org/10.1103/PhysRevLett.55.2409.

C.K. Hong, L. Mandel Higher order squeezing of a quantum field. Phys. Rev. Lett. 54, 323-325 (1985), https://doi.org/10.1103/PhysRevLett.54.323.

C. K. Hong, L, Mandel. Generation of higher order squeezing of quantum electromagnetic field. Phys. Rev. A 32, 974-982 (1985), https://doi.org/10.1103/PhysRevA.32.974.

M. Hillery Amplitude-squared squeezing of the electromagnetic field. Phys. Rev. A 36, 3796-3802 (1987), https://doi.org/10.1103/PhysRevA.36.3796.

M. Hillery Squeezing of the square of the field amplitude in second harmonic generation. Optics Communication 62, 135-138 (1987), https://doi.org/10.1016/0030-4018(87)90097-6.

M. Hillery Sum and difference squeezing of the electromagnetic field. Phys. Rev. A 40, 3147-3155 (1989), https://doi.org/10.1103/physreva.40.3147.

R. Prakash, P. Shukla Detection of Sum and Difference squeezing. IOSR-Journal of Applied Physic 1, 43-47 (2012).

J.J. Gong and P.K. Arvind Higher order squeezing in three and four wave mixing process with loss Phy. Rev. A. 46, 1586-1593 (1992), https://doi.org/10.1103/PhysRevA.46.1586.

P. Shukla, R. Prakash, Ordinary and amplitude squared squeezing in four wave mixing process. Modern Physics Letters B. 1, 350056-8 (2013), https://doi.org/10.1142/S0217984913500863.

P. Shukla, S, A Kumar.i, S. Kanwar Quadrature squeezing in six wave mixing process. TURCOMAT 12, 419-423 (2021).

P. Shukla, R. Prakash Radiation Squeezing for M Two-Level Atoms Interacting with a Single Mode Coherent Radiation. Chinese Journal of Physics 53, 100901-9 (2015), https://doi.org/doi: 10.6122/CJP.20150805A.

D. F. Walls, P. Zoller Reduced Quantum Fluctuations in Resonance Fluorescence. Phys. Rev. Lett. 47, 709-711 (1981), https://doi.org/10.1103/PhysRevLett.47.709.

P. Grünwald , W. Vogel, Optimal squeezing in the resonance fluorescence of single-photon emitters. Phys. Rev. A 88, 023837 (2013), https://doi.org/10.1103/PhysRevA.88.023837.

P.Grünwald, W. Vogel Optimal Squeezing in Resonance Fluorescence via Atomic-State Purification. Phys. Rev. Lett. 109, 013601 (2012), https://doi.org/10.1103/PhysRevLett.109.013601.

J.Zhang, K. C. Peng. Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state. Phys. Rev. 62, 064302 (2000), https://doi.org/10.1103/PhysRevA.62.064302.

W. P. Bowen, R. Schnabel, H. A. Bachor and P. K. Lam Polarization Squeezing of Continuous Variable Stokes Parameters. Phys. Rev. Lett. 88, 093601 (2002), https://doi.org/10.1103/PhysRevLett.88.093601.

M. Hillery, Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309–022316 (2000), https://doi.org/10.1103/PhysRevA.61.022309.

P. Marek, H. Jeong & M. S. Kim Generating “squeezed” superpositions of coherent states using photon addition and subtraction. Phys. Rev. A 78, 063811–063818 (2008), https://doi.org/10.1103/PhysRevA.78.063811.

C. H. H. Schulte, et al. Quadrature squeezed photons from a two-level system. Nature 525, 222–225 (2015), https://doi.org/10.1038/nature14868.

M. Chekhova, G. Leuchs, M. Zukowski Bright squeezed vacuum: Entanglement of macroscopic light beams. Opt. Commun. 337, 27-43 (2015), https://doi.org/10.1016/j.optcom.2014.07.050.

M. Mehmet, S.Steinlechner et al. Observation of cw squeezed light at 1550 nm Opt. Lett. 34, 1060–1062 (2009), https://doi.org/10.1364/OL.34.001060.

T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner and R. Schnabel Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source. Phys. Rev. A 83, 052329 (2011), https://doi.org/10.1103/PhysRevA.83.052329.

K. McKenzie, et al. Squeezing in the Audio Gravitational-Wave Detection Band. Phys. Rev. Lett. 93, 161105 (2004), https://doi.org/10.1103/PhysRevLett.93.161105.

S. Rowan, J.Hough, and D. R. M. Crooks. Thermal noise and material issues for gravitational wave detectors. Phys. Lett. A 347, 25–32 (2005), https://doi.org/10.1016/j.physleta.2005.06.055.

H. Vahlbruch, et al. Coherent Control of Vacuum Squeezing in the Gravitational-Wave Detection Band. Phys. Rev. Lett. 97, 011101 (2006), https://doi.org/10.1103/PhysRevLett.97.011101.

M. Mehmet, et al. Observation of squeezed states with strong photon-number oscillations. Phys. Rev. A 81, 013814 (2010), https://doi.org/10.1103/PhysRevA.81.013814.

P. R. Rice, L. M. Pedrotti Fluorescent spectrum of a single atom in a cavity with injected squeezed vacuum. Journal of Optical Society of America B 9, 2008-2014 (2008), https://doi.org/10.1364/JOSAB.9.002008.

D. Erenso, R. Vyas Two-level atom coupled to a squeezed vacuum inside a coherently driven cavity. Physical Review A 65, 063808 (2002), https://doi.org/10.1103/PhysRevA.65.063808.

W. Qin, et al. Emission of photon pairs by mechanical stimulation of the squeezed vacuum Physical Review A 100, 062501 (2019), https://doi.org/10.1103/PhysRevA.100.062501.

T. Horrom, et al. Quantum-enhanced magnetometer with low-frequency squeezing. Physical Review A 86, 023803 (2012), https://doi.org/10.1103/PhysRevA.86.023803.

W. P. Bowen, et al. Polarization Squeezing of Continuous Variable Stokes Parameters Physical Review Letters 88, 093601 (2002), https://doi.org/10.1103/PhysRevLett.88.093601.

E. S. Polzik, J. Ye Entanglement and spin squeezing in a network of distant optical lattice clocks. Physical Review A 93, 021404-1-5 (2016), https://doi.org/10.1103/PhysRevA.93.021404.

T. Horrom, et al. Quantum-enhanced magnetometer with low-frequency squeezing. Physical Review A 86, 023803 (2012), https://doi.org/10.1103/PhysRevA.86.023803.

W. P. Bowen, R. Schnabel, H.-A. Bachor, P. K. Lam. Optical experiments beyond the quantum limit: Squeezing, entanglement, and teleportation. Optics and Spectroscopy 94, 651-665 (2003), https://doi.org/10.1134/1.1576832.

C. Genes, P. R. Berman, A. G.Rojo, Spin squeezing via atom-cavity field coupling. Phys. Rev. A 68, 043809 (2003), https://doi.org/10.1134/1.1576832.

Christian R. Müller, Lars S. Madsen et al. Parsing polarization squeezing into Fock layers. Phys Rev A 93, 033816 (2016), https://doi.org/10.1103/PhysRevA.93.033816.

Alfredo Luis, Natalia Korolkova . Polarization squeezing and nonclassical properties of light. Physical Review A 74, 43817 (2006), https://doi.org/10.1103/PhysRevA.74.043817.

Ahmad Muhammad Ashfaq et al. Higher order squeezing as a measure of nonclassicality. Optik - International Journal for Light and Electron Optics 127, 2992-2995 (2015), https://doi.org/10.1016/j.ijleo.2015.11.228.

Giri Dilip Kumar, P. S. Gupta Sum Squeezing of the Field Amplitude in Frequency Upconversion Process. International Journal of Optics, 1-9 (2020), https://doi.org/10.1155/2020/1483710.

Mehmet Moritz, et al. Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB. Optics Express 19, 25763-25772 (2011), https://doi.org/10.1364/OE.19.025763.

M. M. Miller and E. A. Mishkin Anti-correlation effects in quantum optics. Phys. Lett. A 24, 188-189 (1967), https://doi.org/10.1016/0375-9601(67)90758-X.

P. P. Bertrand and E. A. Mishkin Anticorrelation effects in single mode field. Phys. Lett. A. 25A, 204-205 (1967), https://doi.org/10.1016/0375-9601(67)90858-4.

N. Chandra and H. Prakash Anticorrelation in two photon attenuated laser beam. Phys. Rev. A 1, 1696 (1970), https://doi.org/10.1103/PhysRevA.1.1696.

D. Stoler, Photon antibunching and possible ways to observe it. Phys. Rev. Lett. A 33, 1397 (1974), https://doi.org/10.1103/PhysRevLett.33.1397.

L. Mandel Squeezing and photon antibunching in harmonic generation. Optics Communications 42, 437 (1982), https://doi.org/10.1016/0030-4018(82)90283-8.

M. Koashi, et al. Photon antibunching in pulsed squeezed light generated via parametric amplification. Phys. Rev. Lett. A 71, 1164-1167 (1993), https://doi.org/10.1103/PhysRevLett.71.1164.

P. Gupta, P. N. Pandey and A. Pathak Higher order antibunching is not a rare phenomenon J. Phys. B. At. Mol. Opt. Phys. 39, 1137 (2006), https://doi.org/10.1088/0953-4075/39/5/012,

H. J. Kimble, M. Dagenais and L. Mandel Photon antibunching in resonance fluorescence. Phys. Rev. Lett. A 33, 691-695 (1974), https://doi.org/10.1103/PhysRevLett.39.691.

A. Pathak and M. Garcia Control of higher order antibunching. Applied Physics B 84, 479-484 (2006), https://doi.org/10.1007/s00340-006-2323-x.

L. Mandel Subpoissonian photon statistics in resonance fluorescence. Opt. Lett. 1, 205-207 (1979), https://doi.org/10.1364/OL.4.000205.

S. Ferretti, V.Savona , D. Gerace. Optimal antibunching in passive photonic devices based on coupled nonlinear resonators. New J. Phys. 15, 025012 (2013), https://doi.org/10.1088/1367-2630/15/2/025012.

Yi. Ren, et al. Antibunched photon-pair source based on photon blockade in a nondegenerate optical parametric oscillator. Phys Rev A 103, 053710 (2021), https://dx.doi.org/10.1103/PhysRevA.103.053710.

Lukas Hanschke, et al. Origin of Antibunching in Resonance Fluorescence. Physical Review Letter. Letters. 125, 170402 (2020), https://doi.org/10.1103/PhysRevLett.125.170402.

Elmer Suarez, et al. Photon-antibunching in the fluorescence of statistical ensembles of emitters at an optical nanofiber-tip. New J. Phys. 21, 035009-1-13 (2019), https://doi.org/10.1088/1367-2630/ab0a99.

Liu. Shaojie, Lin Xing, Liu Feng, Lei Hairui, Fang Wei, and Chaoyuan Jin. Observation of photon antibunching with only one standard single-photon detector. Review of Scientific Instruments 92, 013105 (2021), https://doi.org/10.1063/5.0038035.

Junheng Shi, Giuseppe Patera, Dmitri B. Horoshko, and Mikhail I. Kolobov. Quantum temporal imaging of antibunching. Journal of the Optical Society of America B 37, 3741-3753 (2020), https://doi.org/10.1364/JOSAB.400270.

T. Moradi, M. Bagheri Harouni, M. H. Naderi. Photon antibunching control in a quantum dot and metallic nanoparticle hybrid system with non-Markovian dynamics Scientific Reports 8, 12435 (2018), https://doi.org/10.1038/s41598-018-29799-4.

Christopher Gies, Frank Jahnke, and W. Chow Weng. Photon antibunching from few quantum dots in a cavity. Phys. Rev. A 91, 061804 (2015), https://doi.org/10.1103/PhysRevA.91.061804.

Chen Zihao, Zhou Yao, and Shen Jung-Tsung. Photon antibunching and bunching in a ring-resonator waveguide quantum electrodynamics system. Optics Letters 41, 3313-3316 (2016), https://doi.org/10.1364/OL.41.003313.

De Greve K., et al. Photon antibunching and magnetospectroscopy of a single fluorine donor in ZnSe. Appl. Phys. Lett. 97, 241913 (2010), https://doi.org/10.1063/1.3525579.

E.T. Jaynes and F.W. Cumming. Comparison of Quantum and semiclassical Radiation theories with application to the beam maser. Proc. IEEE 51, 89-109 (1963). https:/doi:10.1109/PROC.1963.1664.

M. Tavis and F.W. Cumming Exact Solution for an N-Molecule-Radiation-Field Hamiltonian. Phys. Rev. 170, 379-384 (1968), https://doi.org/10.1103/PhysRev.170.379.

P. L. Knight, P.W. Milonni The rabi frequency in optical spectra. Physics Reports 66, 21-107 (1980), https://doi.org/10.1016/0370-1573(80)90119-2.

Ramsay, A. J. et al. Phonon-Induced Rabi-Frequency Renormalization of Optically Driven Single InGaAs/GaAs Quantum Dots. Phys. Rev. Lett. 105, 177402 (2010), https://doi.org/10.1103/PhysRevLett.105.177402

A.J. Ramsay,. et al. Damping of Exciton Rabi Rotations by Acoustic Phonons in Optically Excited InGaAs/GaAs Quantum Dots. Phys. Rev. Lett. 104, 017402 (2010), https://doi.org/10.1103/PhysRevLett.104.017402.

McCutcheon Dara P. S., et al. A general approach to quantum dynamics using a variational master equation: Application to phonon-damped Rabi rotations in quantum dots. Phys. Rev. B 84, 081305 (2011), https://doi.org/10.1103/PhysRevB.84.081305.

A. Vagov, et al. Nonmonotonic Field Dependence of Damping and Reappearance of Rabi Oscillations in Quantum Dots. Phys. Rev. Lett. 98, 227403 (2007), https://doi.org/10.1103/PhysRevLett.98.227403.

Huang Yuming, et al. Rabi oscillation study of strong coupling in a plasmonic nanocavity. New Journal of Physics 22, 063053 (2020), https://doi.org/10.1088/1367-2630/ab9222.

T K. Hakala, J.J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu. and P. Törmä Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules. Phys. Rev. Lett. 103, 053602 (2009), https://doi.org/10.1103/PhysRevLett.103.053602.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo and C. Lienau Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in J-aggregate/metal hybrid nanostructures. Nat. Photon. 7, 128 (2013), https://doi.org/10.1364/CLEO_QELS.2013.JM2A.5.

C. Tserkezis, M. Wubs and N. Asger Mortensen, Robustness of the Rabi Splitting under Nonlocal Corrections in Plexcitonics. ACS Photonics 5, 133-142 (2018), https://doi.org/10.1021/acsphotonics.7b00538.

Ma Dan-Dan, Zhang Ke-Ye, Qian Jing. Properties of collective Rabi oscillations with two Rydberg atoms Chinese Physics B 28(1), 013202 (2019).

Hans de Raedt, Bernard Barbara, Seiji Miyashita, Kristel Michielsen, Sylvain Bertaina, et al. Quantum simulations and experiments on Rabi oscillations of spin qubits: Intrinsic vs extrinsic damping. Physical Review B 85, 014408-1-17 (2012), https://doi.org/10.1103/PhysRevB.85.014408.

Konthasinghe Kumarasiri. et al. Rabi oscillations and resonance fluorescence from a single hexagonal boron nitride quantum emitter. Optica 6, 542-548 (2019), https://doi.org/10.1364/OPTICA.6.000542.

G. Ramon, C. Brief and A. Mann Collective effects in the collapses-revival phenomenon and squeezing in the Dicke model. Phys. Rev. A 58, 2506 (1998), https://doi.org/10.1103/PhysRevA.58.2506.

Ho Trung Dung; A. S. Shumovsky. Vacuum field Rabi oscillations in a bimodal cavity Qunt. Opt. 4, 85 (1992), https://doi.org/10.1088/0954-8998/4/2/003.

G. S. Agarwal Vacuum field Rabi oscillations of atoms in a cavity. J. Opt. Soc. Am. B. 1985. 2, P. 480-485, https://doi.org/10.1364/JOSAB.2.000480.

A.V. Kozlovskiĭ Collapse and revival of the Doppler-Rabi oscillations of a moving atom in a cavity. Journal of Experimental and Theoretical Physics 107, 746-757 (2008), https://doi.org/10.1134/S1063776108110046.

D. Moretti, D. Felinto, and J. W. R. Tabosa. Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble. Phys. Rev. A 79, 023825 (2009), https://doi.org/10.1103/PhysRevA.79.023825.

P. R. Berman, C. H. Raymond Ooi Collapse and revivals in the Jaynes-Cummings model: An analysis based on the Mollow transformation. Physical Review A 89, 033845 (2014), https://doi.org/10.1103/PhysRevA.89.033845.

F. A. A. El-Orany The revival-collapse phenomenon in the quadrature squeezing and in the Wigner function of the single mode field interacting with the two level atoms. J. Phys. A: Math Gen. 39, 3397 (2006), https://doi.org/10.1088/0305-4470/39/13/017.

F. A. El-Orany Revival-collapse phenomenon in the quadrature squeezing of the multiphoton intensity-dependent Jaynes-Cummings model. Journal of Modern Optics 53, 12 (2009), https://doi.org/10.1080/09500340600590059.

Ranjana Prakash and Pramila Shukla Collapses and revivals in M two-level atoms interacting with a single mode coherent radiation. International Journal of Modern Physics B 22, 2463-2471 (2008), https://doi.org/10.1142/S021797920803940X.

F.A. El-Orany Revival-collapse phenomenon in the quadrature squeezing of the multiphoton intensity-dependent Jaynes-Cummings model. Journal of Modern Optics 53, 1699-1714 (2006); https://doi.org/10.1080/09500340600590059.

J. Rodríguez-Lima, L. M. Arévalo Aguilar . Collapses and revivals of entanglement in phase space in an optomechanical cavity. The European Physical Journal Plus. 135, 1-25 (2020); https://doi.org/10.1140/epjp/s13360-020-00401-z.

Downloads

Published

2022-01-19

How to Cite

Shukla, P., Kumar, S. A., & Kanwar, S. (2022). Interaction of Light with matter: nonclassical phenomenon. Physics and Chemistry of Solid State, 23(1), 5–15. https://doi.org/10.15330/pcss.23.1.5-15

Issue

Section

Scientific articles (Physics)