Взаємодія світла з речовиною: некласичний ефект
DOI:
https://doi.org/10.15330/pcss.23.1.5-15Ключові слова:
взаємодія світла з речовиною, когерентні стани, стискання, антигрупування, осциляції Рабі, колапсування та відновленняАнотація
Взаємодія речовини і світла має дуже важливе застосування як у класичній, так і в некласичній області. У класичній механіці заряджена частинка взаємодіє з коливальним полем. У квантовій механіці взаємодія світла відбувається із квантовими станами. У цій статті зосереджено увагу на важливому некласичному ефекті, а його застосування спостерігалося в останні кілька років.
Посилання
Jin-Shen Peng and Gao Xiang, Introduction to modern Quantum optics, World Scientific, Singapore, (1998).
E. Schrodinger The continuous transition from micro to macro-mechanics. Naturwiss. 1927. 19, P. 644-666.
Klauder J. R. The action option and a Feynman quantization of spinor fields in terms of ordinary c-number. Ann. Phys. 11, 123-168 (1960), https://doi.org/10.1016/0003-4916(60)90131-7.
Mehta C. L., E.C.G. Sudarshan Relation between quantum and semiclassical description of optical coherence. Phys. Rev. 138, B274-80 (1965), https://doi.org/10.1103/PhysRev.138.B274.
J. R. Klauder, J. Mc. Kenna, D. G. Currie On “diagonal” coherent state representations of quantum mechanical density matrices. J. Math. Phys. 6, 734 (1968), https://doi.org/10.1063/1.1704330.
Glauber R. J. The quantum theory of optical coherence. Phys. Rev. 130, 2529 – 2539 (1963), https://doi.org/10.1103/PhysRev.130.2529.
E. C. G. Sudarshan Equivalence of semiclassical and quantum mechanical description of statistical light beam. Phys. Rev. Lett. 10, 277-279 (1963), https://doi.org/10.1103/PhysRevLett.10.277.
R.J. Glauber Coherent and incoherent state of the radiation field. Phys. Rev. 131, 2766 – 2788 (1963), https://doi.org/10.1103/PhysRev.131.2766.
R.J. Glauber Photon correlations. Phys. Rev. Lett. 10, 84-86 (1963), https://doi.org/10.1103/PhysRevLett.10.84.
K. E. Cahil Coherent state representation for the photon density operator. Phys. Rev. 138, B1566-576 (1965), https://doi.org/10.1103/PhysRev.138.B1566.
U. M. Titulaer, R. J. Glauber Correlation function for coherent field. Phys.Rev. 140, B676 (1965), https://doi.org/10.1103/PhysRev.140.B676.
B. R. Mollow, R. J. Glauber Quantum theory of parametric amplification-I. Phys. Rev. 160, 1076-1096 (1967), https://doi.org/10.1103/PhysRev.160.1076.
B. R. Mollow, R. J. Glauber Quantum theory of parametric amplification-II. Phys. Rev. 160, 1097-1108 (1967), https://doi.org/10.1103/PhysRev.160.1097.
H. Prakash, N.Chandra Coherence and nonlinear scattering of radiation. Phys. Rev. A 4, 746 (1971), https://doi.org/10.1103/PhysRevA.4.796.
M. Hillery Classical pure states are coherent states Phys. Lett. 111A, 409-411 (1985).
H. Prakash and N. Chandra. Coherence and nonlinear scattering of radiation. Phys. Lett. 31A, 331-332 (1979), https://doi.org/10.1016/0375-9601(70)90886-8.
R. H Dicke Coherence in spontaneous radiation process. Phys. Rev. 93, 99-110 (1954), https://doi.org/10.1103/PhysRev.93.99.
L. Mandel, E.Wolf Coherence properties of optical field. Rev. Mod. Phys. 37, 231-287 (1965), https://doi.org/10.1103/RevModPhys.37.231.
B. Roy, P. Roy New nonlinear coherent states and some of their nonclassical properties. J. Opt. B: Quantum Semiclass. Opt. 2, 65 (2000), https://doi.org/10.1088/1464-4266/2/1/311.
Wu. Wei, An Wu. Ling, Quantum statistical properties of the generalized excited even and odd coherent state J. Opt. B.: Qun. Sem. Opt. 5, 364-369 (2003), https://doi.org/10.1088/1464-4266/5/4/307.
V. Fock Verallgemeinerung und Lösung der Diracschen statistischen Gleichung Z. Phys. 49, 339-357 (1928), https://doi.org/10.1007/BF01337923.
K. E. Cahill, R. J. Gluaber Density operator & Quasiprobability distributions Phys. Rev. 177, 1882-1902 (1969), https://doi.org/10.1103/PhysRev.177.1882.
C. M. Caves Quantum-mechanical noise in an interferometer Phys. Rev. D. 23, 1693-1708 (1981), https://doi.org/10.1103/PhysRevD.23.1693.
A. B. Matsko et al. Vacuum squeezing in atomic media via self rotation. Phys. Rev. A. 66, 043815-10 (2002), https://doi.org/10.1103/PhysRevA.66.043815.
M. Rosenbluh, R. M. Shelby Squeezed optical solitions. Phys. Rev. Lett. 66, 153-156 (1991), https://doi.org/10.1103/PhysRevLett.66.153.
B.C. Sanders, S.M. Barnett., P.L. Knight Phase variables and squeezed states. Opt. Commn. 58, 290-294 (1986), https://doi.org/10.1016/0030-4018(86)90453-0.
E.S. Polzik et al. Quantum noise of an atomic spin polarization measurement. Phys. Rev. Lett. 80, 3487-3490 (1998), https://doi.org/10.1103/PhysRevLett.80.3487.
A. Messikh et al. Spin squeezing as a measure of entanglement in a two qubit System. J. Opt. B: Qun. Sem. Opt. 5, 64301-1-4 (2003), 10.1103/PhysRevA.68.064301.
A. Kuzmich et al. Spin squeezing in an ensemble of atoms illuminate with squeezed light. Phys. Rev. Lett. 79, 4782-4785 (1977), https://doi.org/10.1103/PhysRevLett.79.4782.
E. H. Kennard Quantum mechanics of linear oscillators. Z. Phys. 44, 326-352 (1927).
D. Stoler Equivalence classes of minimum uncertainty packet I. Phys. Rev. D. 1, 3217-3219 (1970), https://doi.org/10.1103/PhysRevD.1.3217.
D. Stoler Equivalence classes of minimum uncertainty packet I. Phys. Rev. D. 4, 1925-1930 (1971), https://doi.org/10.1103/PhysRevD.4.1925.
P. Yuen Two photon coherent states of radiation field. Phys. Rev. A. 13, 2226-2243 (1976), https://doi.org/10.1103/PhysRevA.13.2226.
R. E. Slusher, Yurke H. Bernard Squeezed light for coherent communication. IEEE 8, 466-477 (1990), https://doi.org/10.1109/50.50742.
H. P.Yuen, J. H. Shapiro Optical communication with two photon coherent states –Part I: quantum state propagation and quantum noise reduction. IEEE Trans. Inform. Theory IT 24, 657-668 (1978), https://doi.org/10.1109/TIT.1978.1055958.
S. L. Braunstein, H. J. Kimble Teleportation of continuous quantum variables Phys. Rev. Lett. 80, 869-872 (1998), https://doi.org/10.1103/PhysRevLett.80.869.
Takei et al. Experimental demonstration of quantum teleportation of squeezed light. Phys. Rev. A. 72, 042304 (2005), https://doi.org/10.1103/PhysRevA.72.042304.
S. Benjamin Sending entanglement through noisy quantum channel. Phys. Rev. A. 54, 2614-2628 (1996), https://doi.org/10.1103/PhysRevA.54.2614.
C. Zhang et al. Quantum teleportation of light beams. Phys. Rev. A. 67, 033802 1-16 (1996), https://doi.org/10.1103/PhysRevA.67.033802.
C. M. Caves Quantum mechanical noise in an interferometer. Phys. Rev. D. 23, 1693-1708 (1981), https://doi.org/10.1103/PhysRevD.23.1693.
S. L. Braunstein, H. J. Kimble Dense coding for continuous variables. Phys. Rev. A. 61, 04230 (2000), https://doi.org/10.1103/PhysRevA.61.042302.
J. Kempe. Multiparticle entanglement and its application to cryptography. Phys. Rev. A 60, 910-916 (1999), https://doi.org/10.1103/PhysRevA.60.910.
A. A. Berni, T. Gehring, B M. Nielsen, V. Händchen, M. G. A. Paris, U. L. Andersen Ab initio quantum-enhanced optical phase estimation using real-time feedback control. Nature Photonics 9(9), 577-581 (2015), https://doi.org/10.1038/nphoton.2015.139.
N. C. Menicucci et al. Universal Quantum Computation with Continuous-Variable Cluster States. Phys. Rev. Lett. 2006. 97, P. 110501, https://doi.org/10.1103/PhysRevLett.97.110501.
N. Treps et al. Surpassing the Standard Quantum Limit for Optical Imaging Using Nonclassical Multimode Light. Phys. Rev. Lett. 88, 203601 (2002), https://doi.org/10.1103/PhysRevLett.88.203601.
V.Giovannetti, S. Lloyd, L. Maccone Quantum-enhanced positioning and clock synchronization. Nature 412, 417-419 (2001), https://doi.org/10.1038/35086525.
H. J. Kimble, D. F. Walls Squeezed states of the electromagnetic field: Introduction to feature issue. J. Opt. Soc. Am. B. 4(10), 1449 (1987).
R. Loudon, P. L. Knight Special issue on squeezed light. J. Mod. Opt. 34, 709-759 (1987), https://doi.org/10.1080/09500348714550721.
H.A. Haus, J.A. Mullen Quantum noise in linear amplifier. Phys. Rev. 128, 2407-2413 (1962), https://doi.org/10.1103/PhysRev.128.2407.
G. Milburn, D.F. Walls Production of squeezed states in a degenerate parametric amplifier. Optics Communication 39, 401-404 (1981), https://doi.org/10.1016/0030-4018(81)90232-7.
Brown Lowell S. Squeezed states and quantum mechanical parametric amplifier. Phys. Rev. A 36, 2463 (1987), https://doi.org/10.1103/PhysRevA.36.2463.
D. David Crouch Broadband squeezing via degenerate parametric amplifier. Phys. Rev. A 38, 508 (1988), https://doi.org/10.1103/PhysRevA.38.508.
D. David Crouch, S. L. Braunstein Limitation of squeezing via degenerate parametric amplifier. Phys. Rev. A 38, 4696 (1988), https://doi.org/10.1103/PhysRevA.38.4696.
Ekert Artur, Knight Peter L. Nonstationary squeezing in a parametric amplifier. Optics communications 71, 107 (1989).
Bali Samir. The role of quantum jumps in the squeezing of resonance fluorescence from short lived and long lived atoms J. Opt. B.: Quan. Sem. Opt. 6, S706-S711 (2004).
Sizmann A. et al. Observation of amplitude squeezing of the up converted mode in second harmonic generation. Opt. Comm. 80, 138-142 (1990), https://doi.org/10.1016/0030-4018(90)90375-4.
M. Kozierowski Higher order squeezing in kth harmonic generation. Phys. Rev. A 34, 3474-3477 (1986), https://doi.org/10.1103/PhysRevA.34.3474.
Meystre P., Zubairy M. S. Squeezed states in Jaynes Cumming model. Phys. Lett. 89A, 390-392 (1982), https://doi.org/10.1016/0375-9601(82)90330-9.
F.El-Orany, A.Obada On the evolution of superposition of squeezed displaced number states with the multiphoton Jaynes Cumming model. J. Opt. B. Quantum Semiclass. Opt. 5, 60 (2003), https://doi.org/10.1088/1464-4266/5/1/309.
P.Grünwald, W.Vogel Enhanced squeezing by absorption. Physica Scripta 91, 4 (2016), https://doi.org/10.1088/0031-8949/91/4/043001.
R. E. Slusher., L.W. Holber et al. Observation of squeezed state generated by four wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409-2412 (1985), https://doi.org/10.1103/PhysRevLett.55.2409.
C.K. Hong, L. Mandel Higher order squeezing of a quantum field. Phys. Rev. Lett. 54, 323-325 (1985), https://doi.org/10.1103/PhysRevLett.54.323.
C. K. Hong, L, Mandel. Generation of higher order squeezing of quantum electromagnetic field. Phys. Rev. A 32, 974-982 (1985), https://doi.org/10.1103/PhysRevA.32.974.
M. Hillery Amplitude-squared squeezing of the electromagnetic field. Phys. Rev. A 36, 3796-3802 (1987), https://doi.org/10.1103/PhysRevA.36.3796.
M. Hillery Squeezing of the square of the field amplitude in second harmonic generation. Optics Communication 62, 135-138 (1987), https://doi.org/10.1016/0030-4018(87)90097-6.
M. Hillery Sum and difference squeezing of the electromagnetic field. Phys. Rev. A 40, 3147-3155 (1989), https://doi.org/10.1103/physreva.40.3147.
R. Prakash, P. Shukla Detection of Sum and Difference squeezing. IOSR-Journal of Applied Physic 1, 43-47 (2012).
J.J. Gong and P.K. Arvind Higher order squeezing in three and four wave mixing process with loss Phy. Rev. A. 46, 1586-1593 (1992), https://doi.org/10.1103/PhysRevA.46.1586.
P. Shukla, R. Prakash, Ordinary and amplitude squared squeezing in four wave mixing process. Modern Physics Letters B. 1, 350056-8 (2013), https://doi.org/10.1142/S0217984913500863.
P. Shukla, S, A Kumar.i, S. Kanwar Quadrature squeezing in six wave mixing process. TURCOMAT 12, 419-423 (2021).
P. Shukla, R. Prakash Radiation Squeezing for M Two-Level Atoms Interacting with a Single Mode Coherent Radiation. Chinese Journal of Physics 53, 100901-9 (2015), https://doi.org/doi: 10.6122/CJP.20150805A.
D. F. Walls, P. Zoller Reduced Quantum Fluctuations in Resonance Fluorescence. Phys. Rev. Lett. 47, 709-711 (1981), https://doi.org/10.1103/PhysRevLett.47.709.
P. Grünwald , W. Vogel, Optimal squeezing in the resonance fluorescence of single-photon emitters. Phys. Rev. A 88, 023837 (2013), https://doi.org/10.1103/PhysRevA.88.023837.
P.Grünwald, W. Vogel Optimal Squeezing in Resonance Fluorescence via Atomic-State Purification. Phys. Rev. Lett. 109, 013601 (2012), https://doi.org/10.1103/PhysRevLett.109.013601.
J.Zhang, K. C. Peng. Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state. Phys. Rev. 62, 064302 (2000), https://doi.org/10.1103/PhysRevA.62.064302.
W. P. Bowen, R. Schnabel, H. A. Bachor and P. K. Lam Polarization Squeezing of Continuous Variable Stokes Parameters. Phys. Rev. Lett. 88, 093601 (2002), https://doi.org/10.1103/PhysRevLett.88.093601.
M. Hillery, Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309–022316 (2000), https://doi.org/10.1103/PhysRevA.61.022309.
P. Marek, H. Jeong & M. S. Kim Generating “squeezed” superpositions of coherent states using photon addition and subtraction. Phys. Rev. A 78, 063811–063818 (2008), https://doi.org/10.1103/PhysRevA.78.063811.
C. H. H. Schulte, et al. Quadrature squeezed photons from a two-level system. Nature 525, 222–225 (2015), https://doi.org/10.1038/nature14868.
M. Chekhova, G. Leuchs, M. Zukowski Bright squeezed vacuum: Entanglement of macroscopic light beams. Opt. Commun. 337, 27-43 (2015), https://doi.org/10.1016/j.optcom.2014.07.050.
M. Mehmet, S.Steinlechner et al. Observation of cw squeezed light at 1550 nm Opt. Lett. 34, 1060–1062 (2009), https://doi.org/10.1364/OL.34.001060.
T. Eberle, V. Händchen, J. Duhme, T. Franz, R. F. Werner and R. Schnabel Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source. Phys. Rev. A 83, 052329 (2011), https://doi.org/10.1103/PhysRevA.83.052329.
K. McKenzie, et al. Squeezing in the Audio Gravitational-Wave Detection Band. Phys. Rev. Lett. 93, 161105 (2004), https://doi.org/10.1103/PhysRevLett.93.161105.
S. Rowan, J.Hough, and D. R. M. Crooks. Thermal noise and material issues for gravitational wave detectors. Phys. Lett. A 347, 25–32 (2005), https://doi.org/10.1016/j.physleta.2005.06.055.
H. Vahlbruch, et al. Coherent Control of Vacuum Squeezing in the Gravitational-Wave Detection Band. Phys. Rev. Lett. 97, 011101 (2006), https://doi.org/10.1103/PhysRevLett.97.011101.
M. Mehmet, et al. Observation of squeezed states with strong photon-number oscillations. Phys. Rev. A 81, 013814 (2010), https://doi.org/10.1103/PhysRevA.81.013814.
P. R. Rice, L. M. Pedrotti Fluorescent spectrum of a single atom in a cavity with injected squeezed vacuum. Journal of Optical Society of America B 9, 2008-2014 (2008), https://doi.org/10.1364/JOSAB.9.002008.
D. Erenso, R. Vyas Two-level atom coupled to a squeezed vacuum inside a coherently driven cavity. Physical Review A 65, 063808 (2002), https://doi.org/10.1103/PhysRevA.65.063808.
W. Qin, et al. Emission of photon pairs by mechanical stimulation of the squeezed vacuum Physical Review A 100, 062501 (2019), https://doi.org/10.1103/PhysRevA.100.062501.
T. Horrom, et al. Quantum-enhanced magnetometer with low-frequency squeezing. Physical Review A 86, 023803 (2012), https://doi.org/10.1103/PhysRevA.86.023803.
W. P. Bowen, et al. Polarization Squeezing of Continuous Variable Stokes Parameters Physical Review Letters 88, 093601 (2002), https://doi.org/10.1103/PhysRevLett.88.093601.
E. S. Polzik, J. Ye Entanglement and spin squeezing in a network of distant optical lattice clocks. Physical Review A 93, 021404-1-5 (2016), https://doi.org/10.1103/PhysRevA.93.021404.
T. Horrom, et al. Quantum-enhanced magnetometer with low-frequency squeezing. Physical Review A 86, 023803 (2012), https://doi.org/10.1103/PhysRevA.86.023803.
W. P. Bowen, R. Schnabel, H.-A. Bachor, P. K. Lam. Optical experiments beyond the quantum limit: Squeezing, entanglement, and teleportation. Optics and Spectroscopy 94, 651-665 (2003), https://doi.org/10.1134/1.1576832.
C. Genes, P. R. Berman, A. G.Rojo, Spin squeezing via atom-cavity field coupling. Phys. Rev. A 68, 043809 (2003), https://doi.org/10.1134/1.1576832.
Christian R. Müller, Lars S. Madsen et al. Parsing polarization squeezing into Fock layers. Phys Rev A 93, 033816 (2016), https://doi.org/10.1103/PhysRevA.93.033816.
Alfredo Luis, Natalia Korolkova . Polarization squeezing and nonclassical properties of light. Physical Review A 74, 43817 (2006), https://doi.org/10.1103/PhysRevA.74.043817.
Ahmad Muhammad Ashfaq et al. Higher order squeezing as a measure of nonclassicality. Optik - International Journal for Light and Electron Optics 127, 2992-2995 (2015), https://doi.org/10.1016/j.ijleo.2015.11.228.
Giri Dilip Kumar, P. S. Gupta Sum Squeezing of the Field Amplitude in Frequency Upconversion Process. International Journal of Optics, 1-9 (2020), https://doi.org/10.1155/2020/1483710.
Mehmet Moritz, et al. Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB. Optics Express 19, 25763-25772 (2011), https://doi.org/10.1364/OE.19.025763.
M. M. Miller and E. A. Mishkin Anti-correlation effects in quantum optics. Phys. Lett. A 24, 188-189 (1967), https://doi.org/10.1016/0375-9601(67)90758-X.
P. P. Bertrand and E. A. Mishkin Anticorrelation effects in single mode field. Phys. Lett. A. 25A, 204-205 (1967), https://doi.org/10.1016/0375-9601(67)90858-4.
N. Chandra and H. Prakash Anticorrelation in two photon attenuated laser beam. Phys. Rev. A 1, 1696 (1970), https://doi.org/10.1103/PhysRevA.1.1696.
D. Stoler, Photon antibunching and possible ways to observe it. Phys. Rev. Lett. A 33, 1397 (1974), https://doi.org/10.1103/PhysRevLett.33.1397.
L. Mandel Squeezing and photon antibunching in harmonic generation. Optics Communications 42, 437 (1982), https://doi.org/10.1016/0030-4018(82)90283-8.
M. Koashi, et al. Photon antibunching in pulsed squeezed light generated via parametric amplification. Phys. Rev. Lett. A 71, 1164-1167 (1993), https://doi.org/10.1103/PhysRevLett.71.1164.
P. Gupta, P. N. Pandey and A. Pathak Higher order antibunching is not a rare phenomenon J. Phys. B. At. Mol. Opt. Phys. 39, 1137 (2006), https://doi.org/10.1088/0953-4075/39/5/012,
H. J. Kimble, M. Dagenais and L. Mandel Photon antibunching in resonance fluorescence. Phys. Rev. Lett. A 33, 691-695 (1974), https://doi.org/10.1103/PhysRevLett.39.691.
A. Pathak and M. Garcia Control of higher order antibunching. Applied Physics B 84, 479-484 (2006), https://doi.org/10.1007/s00340-006-2323-x.
L. Mandel Subpoissonian photon statistics in resonance fluorescence. Opt. Lett. 1, 205-207 (1979), https://doi.org/10.1364/OL.4.000205.
S. Ferretti, V.Savona , D. Gerace. Optimal antibunching in passive photonic devices based on coupled nonlinear resonators. New J. Phys. 15, 025012 (2013), https://doi.org/10.1088/1367-2630/15/2/025012.
Yi. Ren, et al. Antibunched photon-pair source based on photon blockade in a nondegenerate optical parametric oscillator. Phys Rev A 103, 053710 (2021), https://dx.doi.org/10.1103/PhysRevA.103.053710.
Lukas Hanschke, et al. Origin of Antibunching in Resonance Fluorescence. Physical Review Letter. Letters. 125, 170402 (2020), https://doi.org/10.1103/PhysRevLett.125.170402.
Elmer Suarez, et al. Photon-antibunching in the fluorescence of statistical ensembles of emitters at an optical nanofiber-tip. New J. Phys. 21, 035009-1-13 (2019), https://doi.org/10.1088/1367-2630/ab0a99.
Liu. Shaojie, Lin Xing, Liu Feng, Lei Hairui, Fang Wei, and Chaoyuan Jin. Observation of photon antibunching with only one standard single-photon detector. Review of Scientific Instruments 92, 013105 (2021), https://doi.org/10.1063/5.0038035.
Junheng Shi, Giuseppe Patera, Dmitri B. Horoshko, and Mikhail I. Kolobov. Quantum temporal imaging of antibunching. Journal of the Optical Society of America B 37, 3741-3753 (2020), https://doi.org/10.1364/JOSAB.400270.
T. Moradi, M. Bagheri Harouni, M. H. Naderi. Photon antibunching control in a quantum dot and metallic nanoparticle hybrid system with non-Markovian dynamics Scientific Reports 8, 12435 (2018), https://doi.org/10.1038/s41598-018-29799-4.
Christopher Gies, Frank Jahnke, and W. Chow Weng. Photon antibunching from few quantum dots in a cavity. Phys. Rev. A 91, 061804 (2015), https://doi.org/10.1103/PhysRevA.91.061804.
Chen Zihao, Zhou Yao, and Shen Jung-Tsung. Photon antibunching and bunching in a ring-resonator waveguide quantum electrodynamics system. Optics Letters 41, 3313-3316 (2016), https://doi.org/10.1364/OL.41.003313.
De Greve K., et al. Photon antibunching and magnetospectroscopy of a single fluorine donor in ZnSe. Appl. Phys. Lett. 97, 241913 (2010), https://doi.org/10.1063/1.3525579.
E.T. Jaynes and F.W. Cumming. Comparison of Quantum and semiclassical Radiation theories with application to the beam maser. Proc. IEEE 51, 89-109 (1963). https:/doi:10.1109/PROC.1963.1664.
M. Tavis and F.W. Cumming Exact Solution for an N-Molecule-Radiation-Field Hamiltonian. Phys. Rev. 170, 379-384 (1968), https://doi.org/10.1103/PhysRev.170.379.
P. L. Knight, P.W. Milonni The rabi frequency in optical spectra. Physics Reports 66, 21-107 (1980), https://doi.org/10.1016/0370-1573(80)90119-2.
Ramsay, A. J. et al. Phonon-Induced Rabi-Frequency Renormalization of Optically Driven Single InGaAs/GaAs Quantum Dots. Phys. Rev. Lett. 105, 177402 (2010), https://doi.org/10.1103/PhysRevLett.105.177402
A.J. Ramsay,. et al. Damping of Exciton Rabi Rotations by Acoustic Phonons in Optically Excited InGaAs/GaAs Quantum Dots. Phys. Rev. Lett. 104, 017402 (2010), https://doi.org/10.1103/PhysRevLett.104.017402.
McCutcheon Dara P. S., et al. A general approach to quantum dynamics using a variational master equation: Application to phonon-damped Rabi rotations in quantum dots. Phys. Rev. B 84, 081305 (2011), https://doi.org/10.1103/PhysRevB.84.081305.
A. Vagov, et al. Nonmonotonic Field Dependence of Damping and Reappearance of Rabi Oscillations in Quantum Dots. Phys. Rev. Lett. 98, 227403 (2007), https://doi.org/10.1103/PhysRevLett.98.227403.
Huang Yuming, et al. Rabi oscillation study of strong coupling in a plasmonic nanocavity. New Journal of Physics 22, 063053 (2020), https://doi.org/10.1088/1367-2630/ab9222.
T K. Hakala, J.J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu. and P. Törmä Vacuum Rabi Splitting and Strong-Coupling Dynamics for Surface-Plasmon Polaritons and Rhodamine 6G Molecules. Phys. Rev. Lett. 103, 053602 (2009), https://doi.org/10.1103/PhysRevLett.103.053602.
P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo and C. Lienau Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in J-aggregate/metal hybrid nanostructures. Nat. Photon. 7, 128 (2013), https://doi.org/10.1364/CLEO_QELS.2013.JM2A.5.
C. Tserkezis, M. Wubs and N. Asger Mortensen, Robustness of the Rabi Splitting under Nonlocal Corrections in Plexcitonics. ACS Photonics 5, 133-142 (2018), https://doi.org/10.1021/acsphotonics.7b00538.
Ma Dan-Dan, Zhang Ke-Ye, Qian Jing. Properties of collective Rabi oscillations with two Rydberg atoms Chinese Physics B 28(1), 013202 (2019).
Hans de Raedt, Bernard Barbara, Seiji Miyashita, Kristel Michielsen, Sylvain Bertaina, et al. Quantum simulations and experiments on Rabi oscillations of spin qubits: Intrinsic vs extrinsic damping. Physical Review B 85, 014408-1-17 (2012), https://doi.org/10.1103/PhysRevB.85.014408.
Konthasinghe Kumarasiri. et al. Rabi oscillations and resonance fluorescence from a single hexagonal boron nitride quantum emitter. Optica 6, 542-548 (2019), https://doi.org/10.1364/OPTICA.6.000542.
G. Ramon, C. Brief and A. Mann Collective effects in the collapses-revival phenomenon and squeezing in the Dicke model. Phys. Rev. A 58, 2506 (1998), https://doi.org/10.1103/PhysRevA.58.2506.
Ho Trung Dung; A. S. Shumovsky. Vacuum field Rabi oscillations in a bimodal cavity Qunt. Opt. 4, 85 (1992), https://doi.org/10.1088/0954-8998/4/2/003.
G. S. Agarwal Vacuum field Rabi oscillations of atoms in a cavity. J. Opt. Soc. Am. B. 1985. 2, P. 480-485, https://doi.org/10.1364/JOSAB.2.000480.
A.V. Kozlovskiĭ Collapse and revival of the Doppler-Rabi oscillations of a moving atom in a cavity. Journal of Experimental and Theoretical Physics 107, 746-757 (2008), https://doi.org/10.1134/S1063776108110046.
D. Moretti, D. Felinto, and J. W. R. Tabosa. Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble. Phys. Rev. A 79, 023825 (2009), https://doi.org/10.1103/PhysRevA.79.023825.
P. R. Berman, C. H. Raymond Ooi Collapse and revivals in the Jaynes-Cummings model: An analysis based on the Mollow transformation. Physical Review A 89, 033845 (2014), https://doi.org/10.1103/PhysRevA.89.033845.
F. A. A. El-Orany The revival-collapse phenomenon in the quadrature squeezing and in the Wigner function of the single mode field interacting with the two level atoms. J. Phys. A: Math Gen. 39, 3397 (2006), https://doi.org/10.1088/0305-4470/39/13/017.
F. A. El-Orany Revival-collapse phenomenon in the quadrature squeezing of the multiphoton intensity-dependent Jaynes-Cummings model. Journal of Modern Optics 53, 12 (2009), https://doi.org/10.1080/09500340600590059.
Ranjana Prakash and Pramila Shukla Collapses and revivals in M two-level atoms interacting with a single mode coherent radiation. International Journal of Modern Physics B 22, 2463-2471 (2008), https://doi.org/10.1142/S021797920803940X.
F.A. El-Orany Revival-collapse phenomenon in the quadrature squeezing of the multiphoton intensity-dependent Jaynes-Cummings model. Journal of Modern Optics 53, 1699-1714 (2006); https://doi.org/10.1080/09500340600590059.
J. Rodríguez-Lima, L. M. Arévalo Aguilar . Collapses and revivals of entanglement in phase space in an optomechanical cavity. The European Physical Journal Plus. 135, 1-25 (2020); https://doi.org/10.1140/epjp/s13360-020-00401-z.