First-principle calculations of band energy structure of CdSe0.5S0.5 solid state solution thin films
DOI:
https://doi.org/10.15330/pcss.23.1.52-56Keywords:
density functional theory, band structure, thin films, solid-state solutionAbstract
The electronic band structure of the solid-state CdSe0.5S0.5 thin film solution in the framework of the density functional theory calculations is investigated. The structure of the sample is constructed on the original binary compound CdS, which crystallizes in the wurtzite phase. Transformations of the electronic energy spectra for the solid-state CdSe0.5S0.5 solution, which occur in the process of transition from bulk crystals to thin films, are analyzed. The refractive index and high-frequency dielectric constant are calculated. All of the calculated parameters correlate well with the known experimental data.
References
I.V. Kurilo, H.A. Ilchuk, S.V. Lukashuk, I.O. Rudyi, V.O. Ukrainets, and N.V. Chekaylo, Semiconductors. 45(12), 1531–1537 (2011); https://doi.org/10.1134/S1063782611120086.
S.A. Medvedev, Yu.V. Klevkov, C.A. Kolosov, V.S. Krivobok, and A.F. Plotnikov, Fiz. Tekhn. Poluprov. 36(8), 937–940 (2002); https://doi.org/10.1134/1.1500463.
N.L. Sermakasheva, G.F. Novikov, Yu.M. Shul’ga, and V.N. Semenov, Semiconductors. 38(4), 380–386 (2004); https://doi.org/10.1134/1.1734662.
M.G. Mil’vidskii, Semiconductor materials in modern electronics. Moscow: Nauka, 1986 (in Russian).
S.V. Averin, P.I. Kuznetsov, V.A. Zhitov, N.V. Alkeev, V.M. Kotov, L.Y. Zakharov, and N.B. Gladysheva, Techn. Phys. 57(11), 1514–1518 (2012); https://doi.org/10.1134/S1063784212110047.
R.N. Bhattacharya, M.A. Contreras, B. Egaas, and R.N. Noufi, A. Kanevce, and J.R. Sites, Appl. Phys. Lett. 89(25), 253503 (2006); https://doi.org/10.1063/1.2410230.
O.I. Oladeji, and L. Chow, Thin Solid Films. 474(1–2), 77–83 (2005); https://doi.org/10.1016/J.TSF.2004.08.114
W. Mahmood, J. Ali, I. Zahid, A. Thomas, and A. Haq, Optik. 158, 1558–1566 (2018); https://doi.org/10.1016/j.ijleo.2018.01.045.
H.A. Ilchuk, E.O. Zmiyovska, R.Y. Petrus, I.V. Petrovich, I.V. Semkiv, A.I. Kashuba, Nanosistemi, Nanomateriali, Nanotehnologii. 18(1), 59–75 (2020); https://doi.org/10.15407/nnn.
M. Zafar, M. Shakil, Sh. Ahmed, M. Raza-ur-rehman Hashmi, M.A. Choudhary, and Naeem-ur-Rehman, Solar Energy. 158, 63 (2017); https://doi.org/10.1016/j.solener.2017.09.034.
R.Yu. Petrus, H.A. Ilchuk, A.I. Kashuba, I.V. Semkiv, and E.O. Zmiiovska, Optics and Spectroscopy. 126(3), 220 (2019); https://doi.org/10.1134/S0030400X19030160.
D. Vanderbilt, Phys. Rev. B. 41(11), 7892(R) (1990); https://doi.org/10.1103/PhysRevB.41.7892.
A. Majchrowski, M. Chrunik, M. Rudysh, M. Piasecki, K. Ozga, G. Lakshminarayana, and I.V. Kityk, Journal of Materials Science. 53(2), 1217–1226 (2018); https://doi.org/10.1007/s10853-017-1554-z.
R. Muruganantham, W.-R. Liu, C.-H. Lin, M. Rudysh, and M. Piasecki, Journal of Energy Storage. 26, 100915 (2019); https://doi.org/10.1016/j.est.2019.100915.
J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 78(7), 1396 (1997); https://doi.org/10.1103/PhysRevLett.78.1396.
H.J. Monkhorst and J.D. Pack, Phys. Rev. B., 13(12), 5188 (1976); https://doi.org/10.1103/PhysRevB.13.5188.
A.I. Kashuba, A.V. Franiv, R.S. Brezvin, and O.V. Bovgyra, Functional materials. 23(4), 026–030 (2017); https://doi.org/10.15407/fm24.01.026.
G.A. Il’chuk, R.Yu. Petrus’, A.I. Kashuba, I.V. Semkiv, and E.O. Zmiiovs’ka, Optics and Spectroscopy. 128(1), 49 (2020); https://doi.org/10.1134/S0030400X20010105.
L. Zuala, P. Agarwal, Materials Chemistry and Physics. 162, 813–821 (2015); https://doi.org/10.1016/j.matchemphys.2015.07.008.
A.I. Kashuba, H.A. Ilchuk, R.Yu. Petrus, B. Andriyevsky, I.V. Semkiv, and E.O. Zmiyovska, Applied Nanoscience (2021); https://doi.org/10.1007/s13204-020-01635-0.
H.A. Ilchuk, B. Andriyevsky, O.S. Kushnir, A.I. Kashuba, I.V. Semkiv, and R.Yu. Petrus, Ukrainian Journal of Physical Optics. 22(2), 86-94 (2021); https://doi.org/10.3116/16091833/22/2/101/2021.