Ultrasonic modification of nanocrystalline NiMoO4 hydrate obtained by hydrothermal method
DOI:
https://doi.org/10.15330/pcss.23.2.341-346Keywords:
nickel molybdate hydrate, ultrasonic modification, specific surface area, conductivityAbstract
The paper presents the results of studies of the crystal structure, surface morphology and electrical properties of nickel molybdate obtained by hydrothermal method and modified by ultrasound. The influence of the duration of ultrasonic dispersion on the crystallites size, specific surface area, pore size distribution and activation energy of charge carriers of nickel molybdate hydrate is determined. It was found that ultrasound with a frequency of 22 kHz and a duration of 90 min leads to an increase in the total volume of mesopores from 0.135 cm2/g to 0.223 cm2/g with an average diameter of 28.5 nm.
References
A. González, E. Goikolea, J.A. Barrena& R. Mysyk, Renewable and sustainable energy reviews 58, 1189 (2016); https://doi.org/10.1016/j.rser.2015.12.249.
P.C. Chen, G. Shen, Y. Shi, H. Chen, & C. Zhou, ACS nano 4(8), 4403 (2010); https://doi.org/10.1021/nn100856y.
B.I. Rachiy, B.K. Ostafiychuk, I.M. Budzulyak, V.M. Vashchynsky, R.P. Lisovsky, V. I. Mandzyuk,
Journal of Nano-& Electronic Physics 6(4), 04031 (2014); https://jnep.sumdu.edu.ua/download/numbers/2014/4/articles/jnep_2014_V6_04031.pdf.
T. Watcharatharapong, M. Minakshi Sundaram, S. Chakraborty, D. Li, G.M. Shafiullah, R.D. Aughterson, & R. Ahuja, ACS Applied Materials & Interfaces 9(21), 17977 (2017); https://doi.org/10.1021/acsami.7b03836.
O. Khemii, I. Budzulyak, L. Yablon, D. Popovych, O. Morushko, R. Lisovskiy, Materials Today: Proceedings 35, 595 (2019); https://doi.org/10.1016/j.matpr.2019.11.207.
V. Boichuk, A. Kachmar, V. Kotsyubynsky, K. Bandura, S. Fedorchenko, Materials Today: Proceedings 50, 423 (2022); https://doi.org/10.1016/j.matpr.2021.11.243.
K.S. Suslick, Science 247(4949), 1439 (1990); https://doi.org/10.1126/science.247.4949.1439.
J.H. Bang& K.S. Suslick, Advanced materials 22(10), 1039 (2010); https://doi.org/10.1002/adma.200904093.
O.M. Popovych, I.M. Budzulyak, V.O. Yukhymchuk, S.I. Budzulyak & D.I. Popovych, Fullerenes, Nanotubes and Carbon Nanostructures 29(12), 1009 (2021); https://doi.org/10.1080/1536383X.2021.1925253.
Y. Ding, Y. Wan, Y.L. Min, W. Zhang, & S.H. Yu, Inorganic Chemistry 47(17), 7813 (2008); https://doi.org/10.1021/ic8007975.
D. Ghosh, S. Giri, & C.K. Das, Nanoscale 5(21), 10428 (2013); https://doi.org/10.1039/C3NR02444J.
G.M. Tomboc & H. Kim, Journal of Materials Science: Materials in Electronics 30(10), 9558 (2019);https://doi.org/10.1007/s10854-019-01290-4.
S.V. Sancheti, P.R. Gogate, Ultrasonics Sonochemistry 36, 527(2016); https://doi.org/10.1016/j.ultsonch. 2016.08.009.
H. Xu, B.W. Zeiger, & K.S. Suslick, Chemical Society Reviews 42(7), 2555 (2013); https://doi.org/10.1039/C2CS35282F.
O.M. Popovych, I.M. Budzulyak, O.V. Popovych, V.O. Kotsyubynsky, L.S. Yablon, Journal of Nano-& Electronic Physics 13(6), 06007 (2021); https://doi.org/10.21272/jnep.13(6).06007.
L.O. Shyyko, V.O. Kotsyubynsky, I.M. Budzulyak, P. Sagan, Nanoscale research letters 11(1), 1 (2016); https://doi.org/10.1186/s11671-016-1451-4.
Y.M. Li, M. Hibino, M. Miyayania & T. Kudo, Solid State Ionics 134(3-4), 271 (2000); https://doi.org/10.1016/S0167-2738(00)00759-1.