Influence of metal atom substitution on the electronic and optical properties of solid-state Cd0.75X0.25Te (X= Cu, Ag and Au) solutions

Authors

  • A.I. Kashuba Lviv Polytechnic National University, Lviv, Ukraine

DOI:

https://doi.org/10.15330/pcss.24.1.92-101

Keywords:

density functional theory, electron band structure, formation energy, effective mass, density of state, refractive index

Abstract

The solid-state Cd0.75X0.25Te (X= Cu, Ag, and Au) solutions crystallize in the cubic structure and are studied in the framework of density functional theory. The theoretical first-principle calculations of the electronic band structure, density of states, and refractive index of solid-state Cd0.75X0.25Te (X= Cu, Ag, and Au) solutions are estimated by the generalized gradient approximation (GGA). A Perdew–Burke–Ernzerhof functional (PBE) was utilized. Formation energy is calculated based on the results of the total energy of the study samples. The effective mass of the electrons and holes was calculated based on the electronic band structure. The influence of atom substitution on electron conductivity and mobility is discussed. To study the optical properties was use a complex dielectric function ε(ħω). The spectral behaviour of the refractive index was calculated based on the dielectric function.

References

A. Kashuba, I. Semkiv, O. Kushnir, Basic physical properties of thin films of cadmium chalcogenides, LAP Lambert Academic Publishing, Riga, Latvia 2021.

R. Petrus, H. Ilchuk, A. Kashuba, I. Semkiv, E. Zmiiovska, Optical properties of CdTe thin films obtained by the method of high-frequency magnetron sputtering, Functional Materials, 27(2), 342 (2020); https://doi.org/10.15407/fm27.02.342.

Z.R. Zapukhlyak, L.I. Nykyruy, V.M. Rubish,G. Wisz, V.V. Prokopiv, M.O. Galushchak, I.M. Lishchynskyy, L.O. Katanova, R.S. Yavorskyi, SCAPS simulation of ZnO/CdS/CdTe/CuO heterostructure for photovoltaic application, Physics and Chemistry of Solid State, 21(4), 660 (2020); https://doi.org/10.15330/PCSS.21.4.660-668.

H. Ilchuk, R. Petrus, I. Semkiv, A. Kashuba, Directional Synthesis of CdX (X = S, Se, and Te) Thin Films for Solar Cell Application, Springer Proceedings in Physics, 247, 117 (2020). https://doi.org/10.1007/978-3-030-52268-1_9.

T. Saga, Advances in Crystalline Silicon Solar Cell Technology for Industrial Mass Production, NPG Asia Materials, 2, 96 (2010); http://dx.doi.org/10.1038/asiamat.2010.82.

Z. Bai, J. Yang, D. Wang, Thin film CdTe solar cells with an absorber layer thickness in micro- and sub-micrometer scale, Appl. Phys. Lett. 99, 143502 (2011);. https://doi.org/10.1063/1.3644160.

Y. Deng, J. Yang, R. Yang, K. Shen, D. Wang, D. Wang, Cu-doped CdS and its application in CdTe thin film solar cell, AIP ADVANCES, 6, 015203 (2016); https://doi.org/10.1063/1.4939817.

J.L. Freeouf, J.M. Woodall, Schottky barriers: An effective work function model, Appl. Phys. Lett., 39, 727 (1981); https://doi.org/10.1063/1.92863.

S.H. Demtsu, J.R. Sites, Effect of back-contact barrier on thin-film CdTe solar cells, Thin Solid Films, 510, 320 (2006); https://doi.org/10.1016/j.tsf.2006.01.004.

A. Bosioa, R. Ciprian, A. Lamperti, I. Rago, B. Ressel, G. Rosa, M. Stupar, E. Weschke, Interface phenomena between CdTe and ZnTe:Cu back contact, Solar Energy, 176, 186 (2018); https://doi.org/10.1016/j.solener.2018.10.035.

K.A. Aris, K.S. Rahman, A.M. Ali, B. Bais, I.B. Yahya, Md. Akhtaruzzaman, H. Misran, S.F. Abdullah, M.A. Alghoul, N.Amin, A comparative study on thermally and laser annealed copper and silver doped CdTe thin film solar cells, Solar Energy, 173, 1 (2018). https://doi.org/10.1016/j.solener.2018.07.009.

T.D. Dzhafarov, S.S. Yesilkaya, N.Y. Canli, M. Caliskan, Diffusion and influence of Cu on properties of CdTe thin films and CdTe/CdS cells, Solar Energy Materials & Solar Cells, 85, 371 (2005);https://doi.org/0.1016/j.solmat.2004.05.007.

T.A. Gessert, A.R. Mason, P. Sheldon, A.B. Swartzlander, D. Niles, T.J. Coutts, Development of Cu‐doped ZnTe as a back‐contact interface layer for thin‐film CdS/CdTe solar cells, J. Vac. Sci. Technol. A, 14(3), 806 (1996); http://dx.doi.org/10.1116/1.580394.

D. Grecu, A.D. Compaan, D. Young, U. Jayamaha, D.H. Rose, Photoluminescence of Cu-doped CdTe and related stability issues in CdS/CdTe solar cells, Journal of Applied Physics, 88, 2490 (2000); http://dx.doi.org/10.1063/1.1287414.

J. Perrenoud, L. Kranz, C. Gretener, F. Pianezzi, S. Nishiwaki, S. Buecheler, A.N. Tiwari, A comprehensive picture of Cu doping in CdTe solar cells, Journal of Applied Physics, 114, 174505 (2013); http://dx.doi.org/10.1063/1.4828484.

G.H. Tariq, M. Anis-ur-Rehman, Annealing effects on physical properties of doped CdTe thin films for photovoltaic applications, Materials Sciencein Semiconductor Processing, 30, 665 (2015); https://doi.org/10.1016/j.mssp.2014.09.012

H.H. Woodbury, M. Aven, Some Diffusion and Solubility Measurements of Cu in CdTe, Journal of Applied Physics, 39, 5485 (1968); http://dx.doi.org/10.1063/1.1655999.

J.P. Chamonal, E. Molva, J.L. Pautrat, Identification of Cu and Ag acceptors in CdTe, Solid State Communications, 43(1l), 801 (1982); https://doi.org/10.1016/0038-1098(82)90843-2.

V. Dzhagan, O. Kapush, O. Isaieva, S. Budzulyak, O. Magda, P.P. Kogutyuk, L. Trishchuk, V. Yefanov, M. Valakh, V. Yukhymchuk, Tuning the photoluminescence of CdTe quantum dots by controllable coupling to plasmonic Au nanoparticles, Physics and Chemistry of Solid State, 23(4), 720 (2022); https://doi.org/10.15330/pcss.23.4.720-727.

V. Lesnyak, A. Wolf, A. Dubavik, L. Borchardt, S.V. Voitekhovich, N. Gaponik, S. Kaskel, A. Eychmuller, 3D Assembly of Semiconductor and Metal Nanocrystals: Hybrid CdTe/Au Structures with Controlled Content, J. Am. Chem. Soc., 133, 13413 (2011); http://dx.doi.org/10.1021/ja202068s.

I. Bouziani, Y. Benhouria, I. Essaoudi, A. Ainane, R. Ahuja, Magnetoelectronic properties of Vanadium impurities co-doped (Cd, Cr)Te compound for spintronic devices: First principles calculations and Monte Carlo simulation, Journal of Magnetism and Magnetic Materials, 466, 420 (2018); https://doi.org/10.1016/j.jmmm.2018.07.033.

N.A. Noor, S. Ali, A. Shaukat, First principles study of half-metallic ferromagnetism in Cr-doped CdTe, Journal of Physics and Chemistry of Solids, 72, 836 (2011); https://doi.org/10.1016/j.jpcs.2011.04.008.

K.L. Yao, G.Y. Gao, Z.L. Liu, L. Zhu, Y.L. Li, Half-metallic ferromagnetic semiconductors of V- and Cr-doped CdTe studied from first-principles pseudopotential calculations, Physica B, 366, 62 (2005); https://doi.org/10.1016/j.physb.2005.05.024.

M.A. Flores, E. Menéndez-Proupin, W. Orellana, J.L. Peña, Sn-doped CdTe as promising intermediate-band photovoltaic material, J. Phys. D: Appl. Phys., 50, 035501 (2017); https://doi.org/10.1088/1361-6463/50/3/035501.

F. Goumrhar, L. Bahmad, O. Mounkachi, A. Benyoussef, Calculated magnetic properties of co-doped CdTe (V,P): First-principles calculation, Computational Condensed Matter., 13, 87 (2017); https://doi.org/10.1016/j.cocom.2017.09.009.

Jie Ma, Su-Huai Wei, T.A. Gessert, K.K. Chin, Carrier density and compensation in semiconductors with multiple dopants and multiple transition energy levels: Case of Cu impurities in CdTe, Physical Review B, 83, 245207 (2011); https://doi.org/10.1103/PhysRevB.83.245207.

M. Sajjad, H.X. Zhang, N.A. Noor, S.M. Alay-e-Abbas, A. Shaukat, Q. Mahmood, Study of half-metallic ferromagnetism in V-doped CdTe alloys by using first-principles calculations, Journal of Magnetism and Magnetic Materials, 343, 177 (2013); http://dx.doi.org/10.1016/j.jmmm.2013.04.045.

J.-H. Yang, W.-J. Yin, J.-S. Park, J. Burst, W.K. Metzger, T. Gessert, T. Barnes, S.-H. Wei, Enhanced p-type dopability of P and As in CdTe using non-equilibrium thermal processing, Journal of Applied Physics, 118, 025102 (2015); http://dx.doi.org/10.1063/1.4926748.

H. Zhu, M. Gu, L. Huang, J. Wang, X. Wu, Structural and electronic properties of CdTe:Cl from first-principles, Materials Chemistry and Physics, 143, 637–641 (2014); http://dx.doi.org/10.1016/j.matchemphys.2013.09.046.

R.Yu. Petrus, H.A. Ilchuk, V.M. Sklyarchuk, A.I. Kashuba, I.V. Semkiv, E.O. Zmiiovska, Transformation of Band Energy Structure of Solid Solutions CdMnTe, J. Nano- Electron. Phys., 10(6), 06042-1 (2018); https://doi.org/10.21272/jnep.10(6).06042.

H. Ilchuk, E. Zmiiovska, R. Petrus, I. Semkiv, I. Lopatynskyi, A. Kashuba, Optical Properties of CdMnTe Film: Experimental and Theoretical Aspects, Journal of Nano- and Electronic Physics, 12(1), 01027-1 (2020); https://doi.org/ 10.21272/jnep.12(1).01027.

Q. Mahmood, M. Hassan, Systematic first principle study of physical properties of Cd0.75Ti0.25Z (Z = S, Se,Te) magnetic semiconductors using mBJ functional, Journal of Alloys and Compounds, 704, 659 (2017); https://doi.org/10.1016/j.jallcom.2017.02.097.

M.H. Tedjini, A. Oukebdane, M.N. Belkaid, N. Aouail, The effect of zinc concentration upon electronic structure, optical and dielectric properties of Cd1− xZnxTe alloy: TB-mBJ investigation, Computational Condensed Matter., 27, e00561 (2021); https://doi.org/10.1016/j.cocom.2021.e00561.

J.L. Roehl, S.V. Khare, Diffusion of Cd vacancy and interstitials of Cd, Cu, Ag, Au and Mo in CdTe: A first principles investigation, Solar Energy. 101, 245 (2014); http://dx.doi.org/10.1016/j.solener.2013.12.017.

H.A. Ilchuk, L.I. Nykyruy, A.I. Kashuba, I.V. Semkiv, M.V. Solovyov, B.P. Naidych, V.M. Kordan, L.R. Deva, M.S. Karkulovska, R.Y. Petrus, Electron, Phonon, Optical and Thermodynamic Properties of CdTe Crystal Calculated by DFT, Physics and Chemistry of Solid State, 23(2), 261 (2022); https://doi.org/10.15330/pcss.23.2.261-269.

J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 78(7), 1396 (1997); https://doi.org/10.1103/PhysRevLett.78.1396).

H.J. Monkhorst and J.D. Pack, Special Points for Brillouin-Zone Integrations, Phys. Rev. B., 13(12), 5188 (1976); https://doi.org/10.1103/PhysRevB.13.5188.

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. A., 140(4), 1133 (1965); https://doi.org/10.1103/PhysRev.140.A1133.

M. Kovalenko, O. Bovgyra, V. Dzikovskyi, R. Bovhyra, DFT study for adsorption of CO and H2 on Pt-doped ZnO nanocluster, SN Appl. Sci. 2, 790 (2020); https://doi.org/10.1007/s42452-020-2591-9.

C. Wang, J. Bernholc, R.F. Davis, Formation energies, abundances, and the electronic structure of native defects in cubic SiC, Phys. Rev. B, 38, 12752(R) (1988); https://doi.org/10.1103/PhysRevB.38.12752.

A. Kashuba, B. Andriyevskyy, I. Semkiv, L. Andriyevska, R. Petrus, E. Zmiiovska, D. Popovych, Influence of Defective Formations on Photoconductivity of Layered Crystals with Cationic Substitution, Journal of Nano- and Electronic Physics, 10(6), 06025 (2018); https://doi.org/10.21272/jnep.10(6).06025.

A. Fonari, C. Sutton, Effective Mass Calculator (2012). https:// github. com/ afona ri/ emc.

M. Aven, J. Prener, Physics and Chemistry of II-VI Compounds, John Wiley and Sons, New York, 1967.

Z. Yinnü, Y. Jinliang, X. Chengyang, First-principles study on electronic structure and conductivity of Sn-doped Ga1.375In0.625O3, Journal of Semiconductors, 36, 012003 (2015); https://doi.org/10.1088/1674-4926/36/1/012003.

J. Liu, Q.-Y. Jiang, S.-D. Zhang, H. Zhang, Carrier mobility and relaxation time in BiCuSeO, Physics Letters A, 383, 125990 (2019); https://doi.org/10.1016/j.physleta.2019.125990.

Downloads

Published

2023-03-11

How to Cite

Kashuba, A. (2023). Influence of metal atom substitution on the electronic and optical properties of solid-state Cd0.75X0.25Te (X= Cu, Ag and Au) solutions. Physics and Chemistry of Solid State, 24(1), 92–101. https://doi.org/10.15330/pcss.24.1.92-101

Issue

Section

Scientific articles (Physics)