Properties of Metal Oxide and Pineapple Fiber Reinforced Dental Composite Resin

Authors

  • R.I.S. Asri Universitas Jenderal Soedirman, Purwokerto, Indonesia
  • B. Sunendar Institut Teknologi Bandung, Bandung, Indonesia
  • I. Dwiandhono Universitas Jenderal Soedirman, Purwokerto, Indonesia
  • A. Harmaji Institut Teknologi Bandung, Bandung, Indonesia

DOI:

https://doi.org/10.15330/pcss.24.4.692-698

Keywords:

pineapple leaf fiber, dental composite resin, hardness, flexural strength, SEM

Abstract

This study aimed to synthesize fillers in the form of alumina-zirconia-carbonate apatite and pineapple leaf fiber (Ananas comosus (L.) Merr) as matrix reinforcement consisting of UDMA, TEGDMA, and DMAEMA for direct dental restoration applications. The sample consisted of four composite groups with the addition of 0-5% fiber. All composite samples were then tested for hardness, flexural strength, and Scanning Electron Microscope (SEM). The results of the composite hardness test without the addition of fiber were 30.31 VHN. With the addition of 1%, 2.5%, and 5% fiber, the composite has a hardness value of 31.13 VHN, 34.02 VHN, and 27.22 VHN, respectively. The results of the three-point bending test showed that the flexural strength of the sample without the addition of fiber was 1.6 MPa, while the addition of 1%, 2.5%, and 5% fiber resulted in the flexural strength of 2.1 MPa, 2.3 MPa, and 1.8 MPa, respectively. The SEM results show a homogeneous particle dispersion morphology, with various agglomerations and gaps. Composites with the addition of 1% and 2.5% fiber have a narrower gap than without the addition of fiber. This explains the increase in the hardness and flexural strength of the composite.

References

M. Rathee, A. Sapra, Dental Caries (StatPearls, Treasure Island (FL): StatPearls Publishing, 2022); https://www.ncbi.nlm.nih.gov/books/NBK551699/.

P . Boitelle, Contemporary management of minimal invasive aesthetic treatment of dentition affected by erosion: case report. BMC Oral Health, 19(1), 123 (2019); https://doi.org/10.1186/s12903-019-0807-4.

S. Belli, O. Eraslan, G. Eskitascioglu, Direct Restoration of Endodontically Treated Teeth: a Brief Summary of Materials and Techniques. Curr Oral Health Rep 2, 182 (2015); https://doi.org/10.1007/s40496-015-0068-5.

D. Dionysopoulos, O. Gerasimidou, Wear of contemporary dental composite resin restorations: a literature review. Restor Dent Endod, 25; 46(2):e18 (2021); https://doi.org/10.5395/rde.2021.46.e18.

X. Zhou, X. Huang, M. Li, X. Peng, S. Wang, X. Zhou, L. Cheng, Development and status of resin composite as dental restorative materials. J. Appl. Polym. Sci., 136, 48180 (2019); https://doi.org/10.1002/app.48180.

S.T. Ozak, P. Ozkan, Nanotechnology and dentistry, Eur J Dent. 7(1), 145 (2019); https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571524/.

Ş. Ţəlu, S. Stach, T. Lainović, M. Vilotić, L. Blažić, S.F. Alb, D. Kakaš, Surface roughness and morphology of dental nanocomposites polished by four different procedures evaluated by a multifractal approach, Applied Surface Science, 330, 20 (2015); https://doi.org/10.1016/j.apsusc.2014.12.120.

M. Mhadhbi, F. Khlissa, C. Bouzidi, Recent Advances in Ceramic Materials for Dentistry. In (Ed.), Advanced Ceramic Materials. IntechOpen (2021); https://doi.org/10.5772/intechopen.96890.

F.H. Latief, A. Chafidz, H. Junaedi, A. Alfozan, R. Khan, Effect of alumina contents on the physicomechanical properties of alumina (Al2o3) reinforced polyester composites. Advances in Polymer Technology (2019); https://doi.org/10.1155/2019/5173537.

O.S. Abd El-Ghany, A.H. Sherief, Zirconia based ceramics, some clinical and biological aspects: Review. Future Dental Journal, 2(2), 55 (2016); https://doi.org/10.1016/j.fdj.2016.10.002.

K. Xu, K. Li, T. Zhong, L. Guan, C. Xie, S. Li, Effects of chitosan as biopolymer coupling agent on the thermal and rheological properties of polyvinyl chloride/wood flour composites, Composites Part B: Engineering, 58, 392 (2014); https://doi.org/10.1016/j.compositesb.2013.10.056.

H. Herlinawati, J.L. Sihombing, A. Kembaren, Masdiana, Utilization of pineapple (ananas comosus l) leaves plant waste as a natural biosorbent. Journal of Physics: Conference Series, 2193(1), 012078 (2022); https://doi.org/10.1088/1742-6596/2193/1/012078.

P.ter Teo, S.K. Zakaria, M.A. Azhar Taib, F. Budiman, M. Mohamed, A.H. Yusoff, S. Ahmad Sobri, Recycling of Pineapple (Ananas comosus) Leaf Agro-waste as One of the Raw Materials for Production of Eco-friendly New Paper, IOP Conference Series: Earth and Environmental Science, 596(1), 012018 (2020); https://doi.org/10.1088/1755-1315/596/1/012018.

C. H. Lee, A. Khalina, S.H. Lee, Importance of Interfacial Adhesion Condition on Characterization of Plant-Fiber-Reinforced Polymer Composites: A Review, Polymers, 13(3), 438 (2021); MDPI AG. Retrieved from http://dx.doi.org/10.3390/polym13030438.

M. Gafur, M. Al-Amin, M. Sarker, M. Alam, Structural and Mechanical Properties of Alumina-Zirconia (ZTA) Composites with Unstabilized Zirconia Modulation. Materials Sciences and Applications, 12, 542-560 (2021); https://doi.org/10.4236/msa.2021.1211036.

R.M. Silva, F.V. Pereira, F.A. Mota, E. Watanabe, S.M. Soares, M.H. Santos, Dental glass ionomer cement reinforced by cellulose microfibers and cellulose nanocrystals, Mater Sci Eng C Mater Biol Appl, 58:389-95(2016); https://doi.org/10.1016/j.msec.2015.08.04.

F. Deng, M.-C.Li, X. Ge, Y. Zhang, U.R. Cho, Cellulose nanocrystals/poly(methyl methacrylate) nanocomposite films: Effect of preparation method and loading on the optical, thermal, mechanical, and gas barrier properties. Polym. Compos., 38: E137-E146 (2017); https://doi.org/10.1002/pc.23875.

B. Tan, Y. Ching, S. Poh, L. Abdullah, S. Gan, A Review of Natural Fiber Reinforced Poly(Vinyl Alcohol) Based Composites: Application and Opportunity, Polymers, MDPI AG, 7(11), 2205-2222, (2015); Retrieved from http://dx.doi.org/10.3390/polym7111509.

M. Haque, R. Rahman, N. Islam, M. Huque, M. Hasan, Mechanical Properties of Polypropylene Composites Reinforced with Chemically Treated Coir and Abaca Fiber, Journal of Reinforced Plastics and Composites, (2009); https://doi.org/10.1177/0731684409343324.

F.S. Talari, Evaluation the Effect of Cellulose Nanocrystalline Particles on Flexural Strength and Surface Hardness of Autoploymerized Temporary Fixed Restoration Resin (2016); https://www.researchgate.net/publication/307557784_Evaluation_the_Effect_of_Cellulose_Nanocrystalline_Particles_on_Flexural_Strength_and_Surface_Hardness_of_Autoploymerized_Temporary_Fixed_Restoration_Resin

F.A. Tanjung, S. Husseinsyah, K. Hussin, Chitosan-filled polypropylene composites: The effect of filler loading and organosolv lignin on mechanical, morphological and thermal properties, Fibers Polym 15, 800–808 (2014); https://doi.org/10.1007/s12221-014-0800-0.

I. Michalska-Pożoga, M. Szczepanek, Analysis of Particles' Size and Degree of Distribution of a Wooden Filler in Wood-Polymer Composites, Materials (Basel), 14(21), 6251(2021); https://doi.org/10.3390/ma14216251.

Downloads

Published

2023-12-16

How to Cite

Asri, R., Sunendar, B., Dwiandhono, I., & Harmaji, A. (2023). Properties of Metal Oxide and Pineapple Fiber Reinforced Dental Composite Resin. Physics and Chemistry of Solid State, 24(4), 692–698. https://doi.org/10.15330/pcss.24.4.692-698

Issue

Section

Scientific articles (Chemistry)