Властивості стоматологічної композитної смоли, армованої оксидом металу та ананасовим волокном
DOI:
https://doi.org/10.15330/pcss.24.4.692-698Ключові слова:
волокно листя ананаса, стоматологічна композитна смола, твердість, міцність на згин, СЕМАнотація
Індонезія є одним з найбільших у світі виробників ананасів, тому відходи листя ананаса там широко доступні. Метою дослідження є демонстрація використання волокна листя ананаса (Ananas comosus (L.) Merr) задля підвищення механічних властивостей матеріалу стоматологічного застосування на основі оксиду металу. Зразок складався з чотирьох композиційних груп з додаванням 0-5% клітковини. Далі усі композитні зразки перевіряли на твердість, міцність на вигин і за допомогою скануючої електронної мікроскопіх (SEM). Результати випробування на твердість композиту без додавання фібри склали 30,31 VHN. З додаванням фібри 1%, 2,5% і 5% твердість композиту становить 31,13 VHN, 34,02 VHN і 27,22 VHN, відповідно. Результати випробування на триточковий згин показали, що міцність на вигин зразка без додавання волокна становила 1,6 МПа, тоді як додавання 1%, 2,5% та 5% волокна призвело до міцності на вигин 2,1 МПа, 2,3 МПа та 1,8 Мпа, відповідно. Результати SEM демонструють однорідну морфологію дисперсії частинок з різними агломераціями та проміжками. Композити з додаванням 1% і 2,5% фібри мають більш вузьку щілину, ніж без додавання фібри. Цим пояснюється підвищення твердості та міцності композиту на вигин.
Посилання
M. Rathee, A. Sapra, Dental Caries (StatPearls, Treasure Island (FL): StatPearls Publishing, 2022); https://www.ncbi.nlm.nih.gov/books/NBK551699/.
P . Boitelle, Contemporary management of minimal invasive aesthetic treatment of dentition affected by erosion: case report. BMC Oral Health, 19(1), 123 (2019); https://doi.org/10.1186/s12903-019-0807-4.
S. Belli, O. Eraslan, G. Eskitascioglu, Direct Restoration of Endodontically Treated Teeth: a Brief Summary of Materials and Techniques. Curr Oral Health Rep 2, 182 (2015); https://doi.org/10.1007/s40496-015-0068-5.
D. Dionysopoulos, O. Gerasimidou, Wear of contemporary dental composite resin restorations: a literature review. Restor Dent Endod, 25; 46(2):e18 (2021); https://doi.org/10.5395/rde.2021.46.e18.
X. Zhou, X. Huang, M. Li, X. Peng, S. Wang, X. Zhou, L. Cheng, Development and status of resin composite as dental restorative materials. J. Appl. Polym. Sci., 136, 48180 (2019); https://doi.org/10.1002/app.48180.
S.T. Ozak, P. Ozkan, Nanotechnology and dentistry, Eur J Dent. 7(1), 145 (2019); https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571524/.
Ş. Ţəlu, S. Stach, T. Lainović, M. Vilotić, L. Blažić, S.F. Alb, D. Kakaš, Surface roughness and morphology of dental nanocomposites polished by four different procedures evaluated by a multifractal approach, Applied Surface Science, 330, 20 (2015); https://doi.org/10.1016/j.apsusc.2014.12.120.
M. Mhadhbi, F. Khlissa, C. Bouzidi, Recent Advances in Ceramic Materials for Dentistry. In (Ed.), Advanced Ceramic Materials. IntechOpen (2021); https://doi.org/10.5772/intechopen.96890.
F.H. Latief, A. Chafidz, H. Junaedi, A. Alfozan, R. Khan, Effect of alumina contents on the physicomechanical properties of alumina (Al2o3) reinforced polyester composites. Advances in Polymer Technology (2019); https://doi.org/10.1155/2019/5173537.
O.S. Abd El-Ghany, A.H. Sherief, Zirconia based ceramics, some clinical and biological aspects: Review. Future Dental Journal, 2(2), 55 (2016); https://doi.org/10.1016/j.fdj.2016.10.002.
K. Xu, K. Li, T. Zhong, L. Guan, C. Xie, S. Li, Effects of chitosan as biopolymer coupling agent on the thermal and rheological properties of polyvinyl chloride/wood flour composites, Composites Part B: Engineering, 58, 392 (2014); https://doi.org/10.1016/j.compositesb.2013.10.056.
H. Herlinawati, J.L. Sihombing, A. Kembaren, Masdiana, Utilization of pineapple (ananas comosus l) leaves plant waste as a natural biosorbent. Journal of Physics: Conference Series, 2193(1), 012078 (2022); https://doi.org/10.1088/1742-6596/2193/1/012078.
P.ter Teo, S.K. Zakaria, M.A. Azhar Taib, F. Budiman, M. Mohamed, A.H. Yusoff, S. Ahmad Sobri, Recycling of Pineapple (Ananas comosus) Leaf Agro-waste as One of the Raw Materials for Production of Eco-friendly New Paper, IOP Conference Series: Earth and Environmental Science, 596(1), 012018 (2020); https://doi.org/10.1088/1755-1315/596/1/012018.
C. H. Lee, A. Khalina, S.H. Lee, Importance of Interfacial Adhesion Condition on Characterization of Plant-Fiber-Reinforced Polymer Composites: A Review, Polymers, 13(3), 438 (2021); MDPI AG. Retrieved from http://dx.doi.org/10.3390/polym13030438.
M. Gafur, M. Al-Amin, M. Sarker, M. Alam, Structural and Mechanical Properties of Alumina-Zirconia (ZTA) Composites with Unstabilized Zirconia Modulation. Materials Sciences and Applications, 12, 542-560 (2021); https://doi.org/10.4236/msa.2021.1211036.
R.M. Silva, F.V. Pereira, F.A. Mota, E. Watanabe, S.M. Soares, M.H. Santos, Dental glass ionomer cement reinforced by cellulose microfibers and cellulose nanocrystals, Mater Sci Eng C Mater Biol Appl, 58:389-95(2016); https://doi.org/10.1016/j.msec.2015.08.04.
F. Deng, M.-C.Li, X. Ge, Y. Zhang, U.R. Cho, Cellulose nanocrystals/poly(methyl methacrylate) nanocomposite films: Effect of preparation method and loading on the optical, thermal, mechanical, and gas barrier properties. Polym. Compos., 38: E137-E146 (2017); https://doi.org/10.1002/pc.23875.
B. Tan, Y. Ching, S. Poh, L. Abdullah, S. Gan, A Review of Natural Fiber Reinforced Poly(Vinyl Alcohol) Based Composites: Application and Opportunity, Polymers, MDPI AG, 7(11), 2205-2222, (2015); Retrieved from http://dx.doi.org/10.3390/polym7111509.
M. Haque, R. Rahman, N. Islam, M. Huque, M. Hasan, Mechanical Properties of Polypropylene Composites Reinforced with Chemically Treated Coir and Abaca Fiber, Journal of Reinforced Plastics and Composites, (2009); https://doi.org/10.1177/0731684409343324.
F.S. Talari, Evaluation the Effect of Cellulose Nanocrystalline Particles on Flexural Strength and Surface Hardness of Autoploymerized Temporary Fixed Restoration Resin (2016); https://www.researchgate.net/publication/307557784_Evaluation_the_Effect_of_Cellulose_Nanocrystalline_Particles_on_Flexural_Strength_and_Surface_Hardness_of_Autoploymerized_Temporary_Fixed_Restoration_Resin
F.A. Tanjung, S. Husseinsyah, K. Hussin, Chitosan-filled polypropylene composites: The effect of filler loading and organosolv lignin on mechanical, morphological and thermal properties, Fibers Polym 15, 800–808 (2014); https://doi.org/10.1007/s12221-014-0800-0.
I. Michalska-Pożoga, M. Szczepanek, Analysis of Particles' Size and Degree of Distribution of a Wooden Filler in Wood-Polymer Composites, Materials (Basel), 14(21), 6251(2021); https://doi.org/10.3390/ma14216251.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2024 R.I.S. Asri, B. Sunendar, I. Dwiandhono, A. Harmaji
Ця робота ліцензованаІз Зазначенням Авторства 3.0 Міжнародна.