Electronic energy structure of the (100) In4Se3 surfaces at different preparation and treatment in ultraviolet photoelectron spectroscopy study

Authors

  • T.R. Makar Ivan Franko Lviv National University, Lviv, Ukraine
  • V.I. Dzyuba Ivan Franko National University of Lviv, Lviv, Ukraine
  • T.M. Nenchuk Ivan Franko National University of Lviv, Lviv, Ukraine
  • O.Ya. Tuziak Ivan Franko National University of Lviv, Lviv, Ukraine
  • P.V. Galiy Ivan Franko National University of Lviv, Lviv, Ukraine

DOI:

https://doi.org/10.15330/pcss.25.1.114-119

Keywords:

layered crystals, ultraviolet photoelectron spectroscopy, band structure, generalized gradient approximation

Abstract

The (100) surface of In4Se3 layered crystal was obtained in situ, ions sputtered and exposed to UHV for hours. The UPS spectra for these surfaces, atomically clean, and after the mentioned treatments, were recorded and analyzed to obtain electronic spectra of In4Se3 (100) surface. The first-principles calculations were performed by DFT-GGA method, and for the In4Se3 underestimated (0.21 eV) band gap was attained. The calculated total density of states of In4Se3 in general coincides with a UPS spectrum for an atomically clean cleaved  surface. Thus the study of the band structure of (100) In4Se3 cleavage surfaces after the ion sputtering or exposure to UHV for more than several hours is uninformative, and such effects on the sample should be avoided.

References

P. Galiy, T. Nenchuk, A. Ciszewski [et al.] Indium deposited nanosystems formation on 2D layered chalcogenide crystals’ surfaces, Mol. Cryst. Liq. Cryst., 768 (1), 20 (2024); https://doi.org/10.1080/15421406.2023.2231241.

A. Dhingra, S. J. Gilbert, J. S. Chen [et al.] Power and polarization-dependent photoresponse of quasi-one-dimensional In4Se3, MRS Advances., 7, 547 (2022); https://doi.org/10.1557/s43580-022-00259-6.

L. Xingfu, X. Bin, Y. Gongqi [et al.] Anisotropic optical and thermoelectric properties of In4Se3 and In4Te3, J. Appl. Phys., 113, 203502 (2013); https://doi.org/10.1063/1.4807312.

S. Suga, A. Sekiyama, C. Tusche, Photoelectron spectroscopy: bulk and surface electronic structures (Springer, 2021).

P. V. Galiy, Y. B. Losovyj, T. M. Nenchuk, I. R. Yarovets’, Low-energy-electron-diffraction structural studies of (100) cleavage surfaces of In4Se3 layered crystals, Ukrainian Journal of Physics, 59, 612 (2014); https://doi.org/10.15407/ujpe59.06.0612.

P. V. Galiy, A. V. Musyanovych, T. M. Nenchuk, Electron spectroscopy of the interface carbon layer formation on the cleavage surface of the layered semiconductor In4Se3 crystals, J. Electron. Spectrosc. Relat. Phenom., 142, 121 (2005); https://doi.org/10.1016/j.elspec.2004.10.005.

J. Liu, Ya. Lozovyj, T. Komesu, P. A. Dowben [et al.] The bulk band structure and inner potential of layered In4Se3, Applied Surface Science, 254, 4322 (2008); https://doi.org/10.1016/j.apsusc.2008.01.061.

P. V. Galiy, T. M. Nenchuk, Ya. B. Lozovyj, Ya. M. Fiyala, Structural and energy changes at the cleavage surfaces of In4Se3 layered crystals under interface formation, Functional materials, 15, 68 (2008).

Ya. B. Losovyj, K. Morris, L. Rosa [et al.] High-resolution photoemission study of organic systems at the CAMD 3m NIM beamline, Nucl. Instr. Methods Phys. Res. A, 582, 258 (2007); https://doi.org/10.1016/j.nima.2007.08.125.

H. B. Michaelson, The work function of the elements and its periodicity, J. Appl. Phys., 48, 4729 (1977); https://doi.org/10.1063/1.323539.

L. Makinistian, E. Albanesi, N. Gonzales Lemus [et al.] Ab initio calculations and ellipsometry measurements of the optical properties the layеred semiconductor In4Se3, Phys. Rev. B., 81, 075217 (2010); https://doi.org/10.1103/PhysRevB.81.075217.

J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865 (1997); https://doi.org/10.1103/PhysRevLett.77.3865.

U. Schwarz, H. Hillebrecht, H. J. Deiseroth, R Walther, In4Te3 und In4Se3: Neubestimmung der Kristallstrukturen, druckabhängiges Verhalten und eine Bemerkung zur Nichtexistenz von In4S3, Z. Kristallogr., 210, 342 (1995); https://doi.org/10.1524/zkri.1995.210.5.342.

M. Sznajder, K. Rushchanskii, L. Kharkhalis [et al.] Similarities of the band structure of In4Se3 and InSe under pressure and peculiarities of the creation of the band gap, Phys. Stat. Sol. B., 243, 592 (2006); https://doi.org/10.1002/pssb.200541176.

X. Shi, J. Y. Cho, J. R. Salvador [et al.] Thermoelectric properties of polycrystalline In4Se3 and In4Te3, Appl. Phys. Lett., 96, 162108 (2010); https://doi.org/10.1063/1.3389494.

K. Fukutani, Y. Miyata, I. Matsuzaki [et al.] High-resolution angle-resolved photoemission study of quasi-one-dimensional semiconductor In4Se3, J. Phys. Soc. Jpn., 84, 074710 (2015); http://dx.doi.org/10.7566/JPSJ.84.074710.

Downloads

Published

2024-03-03

How to Cite

Makar, T., Dzyuba, V., Nenchuk, T., Tuziak, O., & Galiy, P. (2024). Electronic energy structure of the (100) In4Se3 surfaces at different preparation and treatment in ultraviolet photoelectron spectroscopy study. Physics and Chemistry of Solid State, 25(1), 114–119. https://doi.org/10.15330/pcss.25.1.114-119

Issue

Section

Scientific articles (Physics)