Електронна енергетична структура поверхні (100) In4Se3 за різного приготування та при різних впливах при дослідженні ультрафіолетовою фотоелектронною спектроскопією

Автор(и)

  • Т.Р. Макар Львівський національний університет імені Івана Франка, Львів, Україна
  • В.І. Дзюба Львівський національний університет імені Івана Франка, Львів, Україна
  • Т.М. Ненчук Львівський національний університет імені Івана Франка, Львів, Україна
  • О.Я. Тузяк Львівський національний університет імені Івана Франка, Львів, Україна
  • П.В. Галій Львівський національний університет імені Івана Франка, Львів, Україна

DOI:

https://doi.org/10.15330/pcss.25.1.114-119

Ключові слова:

шаруваті кристали, ультрафіолетова фотоелектронна спектроскопія, зонна структура, наближення узагальненого градієнта

Анотація

Поверхні (100) шаруватого кристалу In4Se3 отримувалися in situ, розпилювалися іонами та витримувалися у НВВ протягом кількох годин. Спектри УФЕС таких поверхонь, атомарно чистих та після згаданих впливів, записувалися та аналізувалися задля отримання електронного спектру поверхні (100) In4Se3. Першопринципні розрахунки зонної структури проводилися у наближенні узагальненого градієнту теорії функціонала густини, і для In4Se3 отримано занижену оцінку (0.21 eВ) для забороненої зони. Розрахована повна густина станів In4Se3 в цілому співпадає з УФЕС спектром для атомарно-чистої поверхні. Тому вивчення зонної структури поверхні сколу (100) In4Se3 після іонного розпилення чи перебування у НВВ більше, ніж кілька годин, слід вважати неінформативним, і таких впливів на зразок слід уникати.

Посилання

P. Galiy, T. Nenchuk, A. Ciszewski [et al.] Indium deposited nanosystems formation on 2D layered chalcogenide crystals’ surfaces, Mol. Cryst. Liq. Cryst., 768 (1), 20 (2024); https://doi.org/10.1080/15421406.2023.2231241.

A. Dhingra, S. J. Gilbert, J. S. Chen [et al.] Power and polarization-dependent photoresponse of quasi-one-dimensional In4Se3, MRS Advances., 7, 547 (2022); https://doi.org/10.1557/s43580-022-00259-6.

L. Xingfu, X. Bin, Y. Gongqi [et al.] Anisotropic optical and thermoelectric properties of In4Se3 and In4Te3, J. Appl. Phys., 113, 203502 (2013); https://doi.org/10.1063/1.4807312.

S. Suga, A. Sekiyama, C. Tusche, Photoelectron spectroscopy: bulk and surface electronic structures (Springer, 2021).

P. V. Galiy, Y. B. Losovyj, T. M. Nenchuk, I. R. Yarovets’, Low-energy-electron-diffraction structural studies of (100) cleavage surfaces of In4Se3 layered crystals, Ukrainian Journal of Physics, 59, 612 (2014); https://doi.org/10.15407/ujpe59.06.0612.

P. V. Galiy, A. V. Musyanovych, T. M. Nenchuk, Electron spectroscopy of the interface carbon layer formation on the cleavage surface of the layered semiconductor In4Se3 crystals, J. Electron. Spectrosc. Relat. Phenom., 142, 121 (2005); https://doi.org/10.1016/j.elspec.2004.10.005.

J. Liu, Ya. Lozovyj, T. Komesu, P. A. Dowben [et al.] The bulk band structure and inner potential of layered In4Se3, Applied Surface Science, 254, 4322 (2008); https://doi.org/10.1016/j.apsusc.2008.01.061.

P. V. Galiy, T. M. Nenchuk, Ya. B. Lozovyj, Ya. M. Fiyala, Structural and energy changes at the cleavage surfaces of In4Se3 layered crystals under interface formation, Functional materials, 15, 68 (2008).

Ya. B. Losovyj, K. Morris, L. Rosa [et al.] High-resolution photoemission study of organic systems at the CAMD 3m NIM beamline, Nucl. Instr. Methods Phys. Res. A, 582, 258 (2007); https://doi.org/10.1016/j.nima.2007.08.125.

H. B. Michaelson, The work function of the elements and its periodicity, J. Appl. Phys., 48, 4729 (1977); https://doi.org/10.1063/1.323539.

L. Makinistian, E. Albanesi, N. Gonzales Lemus [et al.] Ab initio calculations and ellipsometry measurements of the optical properties the layеred semiconductor In4Se3, Phys. Rev. B., 81, 075217 (2010); https://doi.org/10.1103/PhysRevB.81.075217.

J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865 (1997); https://doi.org/10.1103/PhysRevLett.77.3865.

U. Schwarz, H. Hillebrecht, H. J. Deiseroth, R Walther, In4Te3 und In4Se3: Neubestimmung der Kristallstrukturen, druckabhängiges Verhalten und eine Bemerkung zur Nichtexistenz von In4S3, Z. Kristallogr., 210, 342 (1995); https://doi.org/10.1524/zkri.1995.210.5.342.

M. Sznajder, K. Rushchanskii, L. Kharkhalis [et al.] Similarities of the band structure of In4Se3 and InSe under pressure and peculiarities of the creation of the band gap, Phys. Stat. Sol. B., 243, 592 (2006); https://doi.org/10.1002/pssb.200541176.

X. Shi, J. Y. Cho, J. R. Salvador [et al.] Thermoelectric properties of polycrystalline In4Se3 and In4Te3, Appl. Phys. Lett., 96, 162108 (2010); https://doi.org/10.1063/1.3389494.

K. Fukutani, Y. Miyata, I. Matsuzaki [et al.] High-resolution angle-resolved photoemission study of quasi-one-dimensional semiconductor In4Se3, J. Phys. Soc. Jpn., 84, 074710 (2015); http://dx.doi.org/10.7566/JPSJ.84.074710.

##submission.downloads##

Опубліковано

2024-03-03

Як цитувати

Макар, Т., Дзюба, В., Ненчук, Т., Тузяк, О., & Галій, П. (2024). Електронна енергетична структура поверхні (100) In4Se3 за різного приготування та при різних впливах при дослідженні ультрафіолетовою фотоелектронною спектроскопією. Фізика і хімія твердого тіла, 25(1), 114–119. https://doi.org/10.15330/pcss.25.1.114-119

Номер

Розділ

Фізико-математичні науки