Assessment of titanium - tungsten iron oxide and their gas sensor application
DOI:
https://doi.org/10.15330/pcss.25.3.498-505Keywords:
TixFe3-xO4, WxFe3-xO4, gas sensor, magnetron co-sputteringAbstract
TixFe3-xO4 and WxFe3-xO4 structures were grown. When examining the atomic percentages of the films grown under the same conditions as the EDX measurements, different ratios are observed in the WxFe3-xO4 structure (O: 71.05%, Fe: 4.22%, W: 24.74%). This is the opposite in the structure of TixFe3-xO4 (O; 58.16%, Fe; 41.68%, Ti; 0.17%). It is possible to say that the power source has an effect here, but also plasma thermodynamics and activation energies of metals play a significant role. The difference in the amount of oxygen in the structures is quite evident. The band gap energy of the as-grown and annealing TixFe3-xO4 structures were determined to be 2.19 eV and 2.14 eV respectively from absorption data. As grown and annealing WxFe3-xO4 structures were determined to be 3.09 eV and 3.15 eV respectively. The response of WxFe3-xO4 structure to hydrogen gas was measured at flow values of 1000 ppm, at 300 degrees, under white light and dark for 300, 180, and 120 seconds, and it has been seen that the examined thin films are suitable for gas sensor application under white light. The WxFe3-xO4 structure exhibits light sensitivity, despite having a relatively wide band gap. However, there is no evidence to suggest that this sensitivity is caused by hydrogen gas; but, it can be said it is sensitive to light. Also, the response of the TixFe3-xO4 structure was measured for 600 seconds, and it has been seen that the examined thin films are not suitable for gas sensor application under white light.
References
A. Chanda, C.M. Hung, A.T. Duong, S. Cho, H. Srikanth, & M.H. Phan, Magnetism and spin-dependent transport phenomena across Verwey and Morin transitions in iron oxide/Pt bilayers, Journal of Magnetism and Magnetic Materials, 568, 170370 (2023); https://doi.org/10.1016/j.jmmm.2023.170370.
J.A. Peters, Relaxivity of manganese ferrite nanoparticles. Progress in Nuclear Magnetic Resonance Spectroscopy, 120, 72 (2020); https://doi.org/10.1016/j.pnmrs.2020.07.002.
D. Varshney, A. Yogi, K. Verma & D.M. Phase, Transport Properties of Fe3−xTixO4 (x = 0.0 and 0.0206) Epitaxial Thin Films, In AIP Conference Proceedings, American Institute of Physics, 1349(1), 599 (2011); https://doi.org/10.1063/1.3606000.
H. Yamahara, M. Seki, M. Adachi, M. Takahashi, H. Nasu, K. Horiba, & H. Tabata, Spin-glass behaviors in carrier polarity controlled Fe3− xTixO4 semiconductor thin films, Journal of Applied Physics, 118(6), (2015); https://doi.org/10.1063/1.4928408.
D. Varshney, A.Yogi, Structural, transport and spectroscopic properties of Ti4+ substituted magnetite: Fe3−xTixO4, Materials Chemistry and Physics, 133(1), 103-109, (2012); https://doi.org/10.1016/j.matchemphys.2011.12.068.
C. Jin, W.B. Mi, P. Li, & H.L. Bai, Experimental and first-principles study on the magnetic and transport properties of Ti-doped Fe3O4 epitaxial films, Journal of Applied Physics, 110(8), (2011); https://doi.org/10.1063/1.3650252.
T.C. Droubay, C.I. Pearce, E.S. Ilton, M.H. Engelhard, W. Jiang, S.M. Heald, & K.M. Rosso, Epitaxial Fe3−xTixO4 films from magnetite to ulvöspinel by pulsed laser deposition, Physical Review B, 84(12), 125443 (2011); https://doi.org/10.1103/PhysRevB.84.125443.
D. Azarifar, R. Asadpoor, O. Badalkhani, M. Jaymand, E. Tavakoli, & M. Bazouleh, Sulfamic‐Acid‐Functionalized Fe3‐xTixO4 Nanoparticles as Novel Magnetic Catalyst for the Synthesis of Hexahydroquinolines under Solvent‐Free Condition, ChemistrySelect, 3(48), 13722 (2018); https://doi.org/10.1002/slct.201802505.
S. Sunaryo, & I. Sugihartono, Separation Study of Titanomagnetite Fe3-xTixO4 from Natural Sand at Indramayu, West Java, Makara Journal of Technology, 14(2), 106 (2011); https://doi.org/10.7454/mst.v14i2.701.
C. Jin, W.B. Mi, P. Li, & H.L. Bai, Experimental and first-principles study on the magnetic and transport properties of Ti-doped Fe3O4 epitaxial films, Journal of Applied Physics, 110(8), (2011); https://doi.org/10.1063/1.3650252.
A. Kosterov, L. Surovitskii, V. Maksimochkin, S. Yanson, & A. Smirnov, Tracing titanomagnetite alteration with magnetic measurements at cryogenic temperatures, Geophysical Journal International, 235(3), 2268 (2023); https://doi.org/10.1093/gji/ggad360.
P.V. Kharitonskii, Y.A. Anikieva, N.A. Zolotov, K.G. Gareev, & A.Y. Ralin, Micromagnetic modeling of Fe3O4−Fe3−xTixO4 composites, Physics of the Solid State, 64(9), (2022); https://doi.org/10.21883/pss.2022.09.54172.31hh.
F. Bosi, U. Hålenius & H. Skogby, Crystal chemistry of the magnetite-ulvospinel series, American Mineralogist, 94(1), 181 (2009); https://doi.org/10.2138/am.2009.3002.
T. Zhang, Z. Zhu, H. Chen, Y. Bai, S. Xiao, X. Zheng & S. Yang, Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study,Nanoscale, 7(7), 2933 (2015); https://doi.org/10.1039/c4nr07024k.
D. Ilager, H. Seo, N.P. Shetti, & S.S. Kalanur, CTAB modified Fe-WO3 as an electrochemical detector of amitrole by catalytic oxidation, Journal of Environmental Chemical Engineering, 8(6), 104580 (2020); https://doi.org/10.1016/j.jece.2020.104580.
M.T. Merajin, M. Nasiri, E. Abedini & S. Sharifnia, Enhanced gas-phase photocatalytic oxidation of n-pentane using high visible-light-driven Fe-doped WO3 nanostructures, Journal of environmental chemical engineering, 6(5), 6741 (2018); https://doi.org/10.1016/j.jece.2018.10.037.
K. Song, Z. Ma, W. Yang, H. Hou, & F. Gao, Electrospinning WO3 nanofibers with tunable Fe-doping levels towards efficient photoelectrochemical water splitting, Journal of Materials Science: Materials in Electronics, 29, 8338 (2018); https://doi.org/10.1007/s10854-018-8844-3.
C.C. Mardare, & A.W. Hassel, Review on the versatility of tungsten oxide coatings, Physica status solidi (a), 216(12), 1900047 (2019); https://doi.org/10.1002/pssa.201900047.
M.B. Tahir, G. Nabi, N.R. Khalid, & W.S. Khan, Synthesis of nanostructured based WO3 materials for photocatalytic applications, Journal of Inorganic and Organometallic Polymers and Materials, 28, 777 (2018); https://doi.org/10.1007/s10904-017-0714-6.
S. Ramkumar, & G. Rajarajan, Effect of Fe doping on structural, optical and photocatalytic activity of WO3 nanostructured thin films, Journal of Materials Science: Materials in Electronics, 27, 1847 (2016); https://doi.org/10.1007/s10854-015-3963-6.
Z. Zhang, Z. Wen, Z. Ye, & L. Zhu, Ultrasensitive ppb-level NO2 gas sensor based on WO3 hollow nanosphers doped with Fe, Applied Surface Science, 434, 891 (2018); https://doi.org/10.1016/j.apsusc.2017.10.074.
M. Ahsan, T. Tesfamichael, M. Ionescu, J. Bell, & N. Motta, Low temperature CO sensitive nanostructured WO3 thin films doped with Fe, Sensors and Actuators B: Chemical, 162(1), 14 (2012); https://doi.org/10.1016/j.snb.2011.11.038.
F. Mehmood, J. Iqbal, T. Jan, & Q. Mansoor, Structural, Raman and photoluminescence properties of Fe doped WO3 nanoplates with anti cancer and visible light driven photocatalytic activities, Journal of Alloys and Compounds, 728, 1329 (2017); https://doi.org/10.1016/j.jallcom.2017.08.234.
J.C. Wang, W. Shi, X.Q. Sun, F.Y. Wu, Y. Li, & Y. Hou, Enhanced Photo-Assisted Acetone Gas Sensor and Efficient Photocatalytic Degradation Using Fe-Doped Hexagonal and Monoclinic WO3 Phase – Junction, Nanomaterials, 10(2), 398 (2020); https://doi.org/10.3390/nano10020398.
A. Paleczek, D. Grochala, K. Staszek, S. Gruszczynski, E. Maciak, Z. Opilski & A. Rydosz, An NO2 sensor based on WO3 thin films for automotive applications in the microwave frequency range, Sensors and Actuators B: Chemical, 376, 132964 (2023); https://doi.org/10.1016/j.snb.2022.132964.
S. Hambir, & S. Jagtap, Nitrogen dioxide gas-sensing properties of hydrothermally synthesized WO3·nH2O nanostructures, Royal Society Open Science. 10(4), 221135 (2023); https://doi.org/10.1098/rsos.221135.
Y.C. Chiu, M. Deb, P.T. Liu, H.W. Zan, Y.R. Kuo Y. Shih & C.C. Hsu, Sputtered Ultrathin WO3 for Realizing Room-Temperature High-Sensitive NO2 Gas Sensors, ACS Applied Electronic Materials 5(11), 5831 (2023); https://doi.org/10.1021/acsaelm.3c00725.
Ruiyang Miao, Wen Zeng, Qi Gao, SDS-assisted hydrothermal synthesis of NiO flake-flowerarchitectures with enhanced gas-sensing properties, Appl. Surf. Sci. 384, 304 (2016); https://doi.org/10.1016/j.apsusc.2016.05.070.
S. Saritas, M. Kundakci, O. Coban, S. Tuzemen, M. Yildirim, Ni: Fe2O3, Mg: Fe2O3 and Fe2O3 thin films gas sensor application, Physica B: Condensed Matter, 541, 14 (2018); ISSN 0921-4526; https://doi.org/10.1016/j.physb.2018.04.028.
T. Manoj, H.P. Perumal, B. Paikaray, A. Haldar, J. Sinha, P.P. Bhattacharjee & C. Murapaka, Perpendicular magnetic anisotropy in a sputter deposited nanocrystalline high entropy alloy thin film, Journal of Alloys and Compounds, 930, 167337 (2023); https://doi.org/10.1016/j.jallcom.2022.167337.
A. Bahr, S. Richter, R. Hahn, T. Wojcik, M. Podsednik, A. Limbeck & H. Riedl, Oxidation behaviour and mechanical properties of sputter-deposited TMSi2 coatings (TM= Mo, Ta, Nb), Journal of Alloys and Compounds, 931, 167532 (2023); https://doi.org/10.1016/j.jallcom.2022.167532.
S.G. Khalil, & M.M. Mutter, Synthesis and Characterization of Semiconductor Composites Gas Sensors Based on ZnO Doped TiO2 Thin Films by Laser-Induced Plasma, Key Engineering Materials, 900, 112 (2021); https://doi.org/10.4028/www.scientific.net/KEM.900.112.
Z. Qu, Y. Li, R. Xu, C. Li, H. Wang, & Q. Wei, Candy-like heterojunction nanocomposite of WO3/Fe2O3-based semiconductor gas sensor for the detection of triethylamine, Microchimica Acta, 190(4), 139 (2023); https://doi.org/10.1007/s00604-023-05699-x.
D. Wang, S. Giannakis, J. Tang, K. Luo, J. Tang, Z. He, & L. Wang, Effect of rGO content on enhanced Photo-Fenton degradation of Venlafaxine using rGO encapsulated magnetic hexagonal FeTiO3 nanosheets, Chemical Engineering Journal, 478, 147319 (2023); https://doi.org/10.1016/j.cej.2023.147319.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Erdal Turgut, Elvan Şenarslan, Günay Merhan Muğlu, Sevda Saritas
This work is licensed under a Creative Commons Attribution 3.0 Unported License.