Дослідження титано-вольфрамового оксиду заліза як датчика газу

Автор(и)

  • Ердал Тургут Університет Ататюрка, кафедра генерації електроенергії, Ерзурум, Туреччина
  • Ельван Шенарслан Університет Ататюрка, кафедра генерації електроенергії, Ерзурум, Туреччина
  • Гюнай Мерхан Муглу Університет Ататюрка, факультет медичних послуг і техніки, Туреччина
  • Севда Сарітас Університет Ататюрка, кафедра виробництва, передачі та розподілу електроенергії, Ерзурум, Туреччина

DOI:

https://doi.org/10.15330/pcss.25.3.498-505

Ключові слова:

TixFe3-xO4, WxFe3-xO4, датчик газу, магнетронне напилення

Анотація

Отримано структури TixFe3-xO4 та WxFe3-xO4. При зміні атомного відсотка плівок, вирощених за тих самих умов, за результатами EDX аналізу, спостерігаються різні співвідношення в їх структурі: WxFe3-xO4(O: 71,05 %, Fe: 4,22 %, W: 24,74 %) та TixFe3-xO4  (O; 58,16 %, Fe; 41,68 %, Ti; 0,17 %). Можна сказати, що тут є внесок джерела живлення, але істотну роль відіграють також термодинаміка плазми та енергія активації металів. Різниця в кількості кисню у цих структурах є очевидна. Енергія забороненої зони вирощеної та відпаленої структур TixFe3-xO4 була визначена з даних поглинання як 2,19 еВ та 2,14 еВ, відповідно. Отритмано, що під час вирощування та відпалу структури для WxFe3-xO4 ці значення становлять 3,09 еВ і 3,15 еВ, відповідно. При дослідженні результатів XRD моноклінної структури кристала WxFe3-xO4 і полікристала TixFe3-xO4 спостерігаються як ромбічні, так і кубічні структури. Відповідь структури WxFe3-xO4 на газоподібний водень вимірювали при значеннях потоку 1000 ppm, при 300 градусах, під білим світлом і темрявою протягом 300, 180, 120 секунд, і було видно, що розглянуті тонкі плівки придатні для газу застосування датчика під білим світлом. Структура WxFe3-xO4 проявляє світлочутливість, незважаючи на відносно широку заборонену зону. Однак немає доказів того, що ця чутливість спричинена газоподібним воднем; але можна твердити про чутливість до освітлення. Крім того, відповідь структури TixFe3-xO4 вимірювали протягом 600 секунд, і було видно, що досліджувані тонкі плівки не підходять для застосування у якості газового датчика під дією білого світла.

Посилання

A. Chanda, C.M. Hung, A.T. Duong, S. Cho, H. Srikanth, & M.H. Phan, Magnetism and spin-dependent transport phenomena across Verwey and Morin transitions in iron oxide/Pt bilayers, Journal of Magnetism and Magnetic Materials, 568, 170370 (2023); https://doi.org/10.1016/j.jmmm.2023.170370.

J.A. Peters, Relaxivity of manganese ferrite nanoparticles. Progress in Nuclear Magnetic Resonance Spectroscopy, 120, 72 (2020); https://doi.org/10.1016/j.pnmrs.2020.07.002.

D. Varshney, A. Yogi, K. Verma & D.M. Phase, Transport Properties of Fe3−xTixO4 (x = 0.0 and 0.0206) Epitaxial Thin Films, In AIP Conference Proceedings, American Institute of Physics, 1349(1), 599 (2011); https://doi.org/10.1063/1.3606000.

H. Yamahara, M. Seki, M. Adachi, M. Takahashi, H. Nasu, K. Horiba, & H. Tabata, Spin-glass behaviors in carrier polarity controlled Fe3− xTixO4 semiconductor thin films, Journal of Applied Physics, 118(6), (2015); https://doi.org/10.1063/1.4928408.

D. Varshney, A.Yogi, Structural, transport and spectroscopic properties of Ti4+ substituted magnetite: Fe3−xTixO4, Materials Chemistry and Physics, 133(1), 103-109, (2012); https://doi.org/10.1016/j.matchemphys.2011.12.068.

C. Jin, W.B. Mi, P. Li, & H.L. Bai, Experimental and first-principles study on the magnetic and transport properties of Ti-doped Fe3O4 epitaxial films, Journal of Applied Physics, 110(8), (2011); https://doi.org/10.1063/1.3650252.

T.C. Droubay, C.I. Pearce, E.S. Ilton, M.H. Engelhard, W. Jiang, S.M. Heald, & K.M. Rosso, Epitaxial Fe3−xTixO4 films from magnetite to ulvöspinel by pulsed laser deposition, Physical Review B, 84(12), 125443 (2011); https://doi.org/10.1103/PhysRevB.84.125443.

D. Azarifar, R. Asadpoor, O. Badalkhani, M. Jaymand, E. Tavakoli, & M. Bazouleh, Sulfamic‐Acid‐Functionalized Fe3‐xTixO4 Nanoparticles as Novel Magnetic Catalyst for the Synthesis of Hexahydroquinolines under Solvent‐Free Condition, ChemistrySelect, 3(48), 13722 (2018); https://doi.org/10.1002/slct.201802505.

S. Sunaryo, & I. Sugihartono, Separation Study of Titanomagnetite Fe3-xTixO4 from Natural Sand at Indramayu, West Java, Makara Journal of Technology, 14(2), 106 (2011); https://doi.org/10.7454/mst.v14i2.701.

C. Jin, W.B. Mi, P. Li, & H.L. Bai, Experimental and first-principles study on the magnetic and transport properties of Ti-doped Fe3O4 epitaxial films, Journal of Applied Physics, 110(8), (2011); https://doi.org/10.1063/1.3650252.

A. Kosterov, L. Surovitskii, V. Maksimochkin, S. Yanson, & A. Smirnov, Tracing titanomagnetite alteration with magnetic measurements at cryogenic temperatures, Geophysical Journal International, 235(3), 2268 (2023); https://doi.org/10.1093/gji/ggad360.

P.V. Kharitonskii, Y.A. Anikieva, N.A. Zolotov, K.G. Gareev, & A.Y. Ralin, Micromagnetic modeling of Fe3O4−Fe3−xTixO4 composites, Physics of the Solid State, 64(9), (2022); https://doi.org/10.21883/pss.2022.09.54172.31hh.

F. Bosi, U. Hålenius & H. Skogby, Crystal chemistry of the magnetite-ulvospinel series, American Mineralogist, 94(1), 181 (2009); https://doi.org/10.2138/am.2009.3002.

T. Zhang, Z. Zhu, H. Chen, Y. Bai, S. Xiao, X. Zheng & S. Yang, Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study,Nanoscale, 7(7), 2933 (2015); https://doi.org/10.1039/c4nr07024k.

D. Ilager, H. Seo, N.P. Shetti, & S.S. Kalanur, CTAB modified Fe-WO3 as an electrochemical detector of amitrole by catalytic oxidation, Journal of Environmental Chemical Engineering, 8(6), 104580 (2020); https://doi.org/10.1016/j.jece.2020.104580.

M.T. Merajin, M. Nasiri, E. Abedini & S. Sharifnia, Enhanced gas-phase photocatalytic oxidation of n-pentane using high visible-light-driven Fe-doped WO3 nanostructures, Journal of environmental chemical engineering, 6(5), 6741 (2018); https://doi.org/10.1016/j.jece.2018.10.037.

K. Song, Z. Ma, W. Yang, H. Hou, & F. Gao, Electrospinning WO3 nanofibers with tunable Fe-doping levels towards efficient photoelectrochemical water splitting, Journal of Materials Science: Materials in Electronics, 29, 8338 (2018); https://doi.org/10.1007/s10854-018-8844-3.

C.C. Mardare, & A.W. Hassel, Review on the versatility of tungsten oxide coatings, Physica status solidi (a), 216(12), 1900047 (2019); https://doi.org/10.1002/pssa.201900047.

M.B. Tahir, G. Nabi, N.R. Khalid, & W.S. Khan, Synthesis of nanostructured based WO3 materials for photocatalytic applications, Journal of Inorganic and Organometallic Polymers and Materials, 28, 777 (2018); https://doi.org/10.1007/s10904-017-0714-6.

S. Ramkumar, & G. Rajarajan, Effect of Fe doping on structural, optical and photocatalytic activity of WO3 nanostructured thin films, Journal of Materials Science: Materials in Electronics, 27, 1847 (2016); https://doi.org/10.1007/s10854-015-3963-6.

Z. Zhang, Z. Wen, Z. Ye, & L. Zhu, Ultrasensitive ppb-level NO2 gas sensor based on WO3 hollow nanosphers doped with Fe, Applied Surface Science, 434, 891 (2018); https://doi.org/10.1016/j.apsusc.2017.10.074.

M. Ahsan, T. Tesfamichael, M. Ionescu, J. Bell, & N. Motta, Low temperature CO sensitive nanostructured WO3 thin films doped with Fe, Sensors and Actuators B: Chemical, 162(1), 14 (2012); https://doi.org/10.1016/j.snb.2011.11.038.

F. Mehmood, J. Iqbal, T. Jan, & Q. Mansoor, Structural, Raman and photoluminescence properties of Fe doped WO3 nanoplates with anti cancer and visible light driven photocatalytic activities, Journal of Alloys and Compounds, 728, 1329 (2017); https://doi.org/10.1016/j.jallcom.2017.08.234.

J.C. Wang, W. Shi, X.Q. Sun, F.Y. Wu, Y. Li, & Y. Hou, Enhanced Photo-Assisted Acetone Gas Sensor and Efficient Photocatalytic Degradation Using Fe-Doped Hexagonal and Monoclinic WO3 Phase – Junction, Nanomaterials, 10(2), 398 (2020); https://doi.org/10.3390/nano10020398.

A. Paleczek, D. Grochala, K. Staszek, S. Gruszczynski, E. Maciak, Z. Opilski & A. Rydosz, An NO2 sensor based on WO3 thin films for automotive applications in the microwave frequency range, Sensors and Actuators B: Chemical, 376, 132964 (2023); https://doi.org/10.1016/j.snb.2022.132964.

S. Hambir, & S. Jagtap, Nitrogen dioxide gas-sensing properties of hydrothermally synthesized WO3·nH2O nanostructures, Royal Society Open Science. 10(4), 221135 (2023); https://doi.org/10.1098/rsos.221135.

Y.C. Chiu, M. Deb, P.T. Liu, H.W. Zan, Y.R. Kuo Y. Shih & C.C. Hsu, Sputtered Ultrathin WO3 for Realizing Room-Temperature High-Sensitive NO2 Gas Sensors, ACS Applied Electronic Materials 5(11), 5831 (2023); https://doi.org/10.1021/acsaelm.3c00725.

Ruiyang Miao, Wen Zeng, Qi Gao, SDS-assisted hydrothermal synthesis of NiO flake-flowerarchitectures with enhanced gas-sensing properties, Appl. Surf. Sci. 384, 304 (2016); https://doi.org/10.1016/j.apsusc.2016.05.070.

S. Saritas, M. Kundakci, O. Coban, S. Tuzemen, M. Yildirim, Ni: Fe2O3, Mg: Fe2O3 and Fe2O3 thin films gas sensor application, Physica B: Condensed Matter, 541, 14 (2018); ISSN 0921-4526; https://doi.org/10.1016/j.physb.2018.04.028.

T. Manoj, H.P. Perumal, B. Paikaray, A. Haldar, J. Sinha, P.P. Bhattacharjee & C. Murapaka, Perpendicular magnetic anisotropy in a sputter deposited nanocrystalline high entropy alloy thin film, Journal of Alloys and Compounds, 930, 167337 (2023); https://doi.org/10.1016/j.jallcom.2022.167337.

A. Bahr, S. Richter, R. Hahn, T. Wojcik, M. Podsednik, A. Limbeck & H. Riedl, Oxidation behaviour and mechanical properties of sputter-deposited TMSi2 coatings (TM= Mo, Ta, Nb), Journal of Alloys and Compounds, 931, 167532 (2023); https://doi.org/10.1016/j.jallcom.2022.167532.

S.G. Khalil, & M.M. Mutter, Synthesis and Characterization of Semiconductor Composites Gas Sensors Based on ZnO Doped TiO2 Thin Films by Laser-Induced Plasma, Key Engineering Materials, 900, 112 (2021); https://doi.org/10.4028/www.scientific.net/KEM.900.112.

Z. Qu, Y. Li, R. Xu, C. Li, H. Wang, & Q. Wei, Candy-like heterojunction nanocomposite of WO3/Fe2O3-based semiconductor gas sensor for the detection of triethylamine, Microchimica Acta, 190(4), 139 (2023); https://doi.org/10.1007/s00604-023-05699-x.

D. Wang, S. Giannakis, J. Tang, K. Luo, J. Tang, Z. He, & L. Wang, Effect of rGO content on enhanced Photo-Fenton degradation of Venlafaxine using rGO encapsulated magnetic hexagonal FeTiO3 nanosheets, Chemical Engineering Journal, 478, 147319 (2023); https://doi.org/10.1016/j.cej.2023.147319.

##submission.downloads##

Опубліковано

2024-08-28

Як цитувати

Тургут, Е., Шенарслан, Е., Муглу, Г. М., & Сарітас, С. (2024). Дослідження титано-вольфрамового оксиду заліза як датчика газу . Фізика і хімія твердого тіла, 25(3), 498–505. https://doi.org/10.15330/pcss.25.3.498-505

Номер

Розділ

Фізико-математичні науки