Do quantum effects influence the energy of polariton states?

Authors

  • Aleksandr Avramenko United States Department of Health and Human Services, Detroit, MI, U.S.

DOI:

https://doi.org/10.15330/pcss.25.3.478-484

Keywords:

Polaritons, Rabi splitting, Cavity, Energy level, Porphyrin, Molecular vibration

Abstract

If an ensemble of molecules is placed inside a nano-scaled Fabry-Pérot cavity capable of trapping a photon resonant with a transition level of the molecule, the photonic and molecular (excitonic) states will exchange energy. If the exchange of energy between the two states is faster than the decay rate of either state, a pair of hybridized light-matter states known as polaritons may form. Polaritons involving a single photon and one type of molecular excitation can be modeled using a two-level Hamiltonian, with the eigenvalues of the matrix serving as the energies of the polariton states. At resonance, the separation between the two polariton states is referred to as the Rabi splitting, and is proportional to the square root of the concentration of the molecules involved in the coupling. In this manuscript data from previously reported cavity polariton measurements is analyzed, and it is found that while the relationship between the square root of the concentration and Rabi splitting holds for the overall energy difference between the polariton states, it is observed that this relationship does not hold for individual polariton energy levels. The basic particle in a box model and harmonic oscillator models of quantum mechanics are invoked in an attempt to qualitatively account for this discrepancy.

References

T.W. Ebbesen, Hybrid Light-Matter States in a Molecular and Material Science. Perspective, Acc. Chem. Res., 49(11), 2403 (2016); https://doi.org/10.1021/acs.accounts.6b00295.

J. Yuen-Zhou, W. Xiong, T. Shegai, Polariton Chemistry: Molecules in cavities and plasmonic media. J. Chem. Phys., 156(3), 030401 (2022); https://doi.org/10.1063/5.0080134.

J. Galego, F.J. Garcia-Vidal, J. Feist, Suppressing photochemical reactions with quantized light fields. Nature, 7(1), 13841 (2016); https://doi.org/10.1038/ncomms13841.

M. Kowalewski, K. Bennett, S. Mukamel, Non-adiabatic dynamics of molecules in optical cavitie. J. Chem. Phys., 144(5), 054309 (2016); https://doi.org/10.1063/1.4941053.

J.A. Hutchison, T. Schwartz, C. Genet, E. Devaux, T.W. Ebbesen, Modifying Chemical Landscapes by Coupling to Vacuum Fields, Angew. Chem., 51(7), 1592 (2012); https://doi.org/10.1002/anie.201107033.

A.G. Avramenko, A.S. Rury, Quantum Control of Ultrafast Internal Conversion Using. Nanoconfined Virtual Photons, J. Phys. Chem. Lett., 11(3), 1013 (2020); https://doi.org/10.1021/acs.jpclett.9b03447.

X. Zhong, T. Chervy, S. Wang, J. George, A. Thomas, J.A. Hutchison, E. Devaux, C. Genet, T.W. Ebbesen, Non-Radiative Energy Transfer Mediated by Hybrid Light-Matter. States, Angew. Chem., 55(21), 6202 (2016); https://doi.org/10.1002/anie.201600428.

R.J. Holmes and S.R. Forrest, Strong Exciton-Photon Coupling and Exciton Hybridization in a Thermally Evaporated Polycrystalline Film of an Organic Small Molecule, Phys. Rev. Lett., 93(18), 186404 (2004); https://doi.org/10.1103/PhysRevLett.93.186404.

C.A. Del Po, S.U.Z. Khan, K.H. Park, B. Kudisch, B.P. Rand, G.D. Scholes, Polariton Decay in Donor-Acceptor Cavity Systems. J. Phys. Chem. Lett., 12(40), 9774 (2021); https://doi.org/10.1021/acs.jpclett.1c02644

M.S. Skolnick, T.A. Fisher, D.M. Whittaker, Strong coupling phenomena in quantum microcavity structures, Semicond. Sci. Technol., 13(7), 645 (1998), https://doi.org/10.1088/0268-1242/13/7/003.

J.J. Hopfield, Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. Phys. Rev., 112(5), 1555 (1958); https://doi.org/10.1103/PhysRev.112.1555.

D.M. Coles, P. Michetti, C. Clark, A.M. Adawi, D.G. Lidzey, Temperature dependence of the upper-branch pola riton population in an organic semiconductor microcavity. Phys. Rev. B., 84(20), 205214 (2011); https://doi.org/10.1103/PhysRevB.84.205214.

A. Graf, Strong light-matter interactions and exciton-polaritons in carbon nanotubes, Dissertation, Heidelberg University, Department of Physical Chemistry, DOI: 10.11588/heidok.00026454.

D.G. Lidzey, D.D.C. Bradley, M.S. Skolnick, T. Virgili, S. Walker, D.M. Whittaker, Strong exciton–photon coupling in an organic semiconductor microcavity, Nature, 395, 53 (1998); https://doi.org/10.1038/25692.

A.G. Avramenko, A.S. Rury, Local molecular probes of ultrafast relaxation channels in strongly coupled metalloporphyrin-cavity systems, J. Phys. Chem., 155(6), 064702 (2021); https://doi.org/10.1063/5.0055296.

A. Thomas, A. Jayachandran, L. Lethuillier-Karl, R.M.A. Vergauwe , K. Nagarajan, E. Devaux, C. Genet, J. Moran, T.W. Ebbesen, Ground state chemistry under vibrational strong coupling: dependence of thermodynamic parameters on the Rabi splitting energy. Nanophotonics, 9(2), 249 (2020); https://doi.org/10.1515/nanoph-2019-0340.

B.E Saleh, M.C. Teich, Fundamentals of Photonics, (John Wiley & Sons, Ltd, NY, 2019).

B. Supriadi, L. Nuraini1, A.S.R. Maulani, D.D. Damayanti, A.F. Sugihartin, M.I. Baihaqi, Complete solutions of particle in three dimensional box with variations in main quantum number. J. Phys. Conf. Ser., 1538, 012038 (2020); https:/doi.org/10.1088/1742-6596/1538/1/012038.

P. Atkins, J.D. Paula, J. Keeler, Atkins' Physical Chemistry. (Oxford university press, 2019).

E. Eizner, L.A. Martínez-Martínez, J. Yuen-Zhou, S. Kéna-Cohen, Inverting singlet and triplet excited states using strong light-matter coupling. Sci. Adv., 5(12), eaax4482 (2019); https:/doi.org/10.1126/sciadv.aax4482.

T. Virgili, D. Coles, A.M. Adawi, C. Clark, P. Michetti, S.K. Rajendran, D. Brida, D. Polli, G. Cerullo, and D.G. Lidzey, Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity. Phys. Rev. B., 83(24), 245309 (2011); https://doi.org/10.1103/PhysRevB.83.245309.

S. Albeverio, S. Fassari, F. Rinaldi, A remarkable spectral feature of the Schrodinger ¨Hamiltonian of the harmonic oscillator perturbed by an attractive δ-interaction centred at the origin: double degeneracy and level crossing. J. Phys. A. Math. Theor., 46(38), 385305 (2013); https:/doi.org/10.1088/1751-8113/46/38/385305.

D.M. Whittaker, P. Kinsler, T.A. Fisher, M.S. Skolnick, A. Armitage, A.M. Afshar, M.D. Sturge, and J.S. Roberts, Motional Narrowing in Semiconductor Microcavities. Phys. Rev. Lett., 77(23), 4792 (1996); https://doi.org/10.1103/PhysRevLett.77.4792.

D.M. Whittaker, P. Kinsler, T.A. Fisher, M.S. Skolnick, A. Armitage, A.M. Afshar, J.S. Roberts, G. Hill, M.A. Pate, Motional narrowing in semiconductor microcavities, Superlattices Microstruct., 22 (1), pp. 91-96, (1997), https://doi.org/10.1006/spmi.1996.0275.

V. Savona, C. Piermarocchi, A. Quattropani, F. Tassone, P. Schwendimann, Microscopic Theory of Motional Narrowing of Microcavity Polaritons in a Disordered Potential. Semicond. Sci. Technol., 78(23), 4470, (1997). https://doi.org/10.1103/PhysRevLett.78.4470.

A.G. Avramenko, A.S. Rury, Conference on Frontiers in Optics and Laser Science, paper # LW6F.3, (Rochester, NY, 2022); https://doi.org/10.1364/LS.2022.LW6F.3.

G.D. Scholes, C.A. DelPo, B. Kudisch, Entropy Reorders Polariton States, J. Phys. Chem. Lett., 11(15), 6389 (2020); https://doi.org/10.1021/acs.jpclett.0c02000;

D. Bajoni. Corrigendum: Polariton lasers. Hybrid light–matter lasers without inversion, J. Phys. D: Appl. Phys., 45(40), 409501 (2012); https:/doi.org/10.1088/0022-3727/45/40/409501.

Downloads

Published

2024-08-22

How to Cite

Avramenko, A. (2024). Do quantum effects influence the energy of polariton states?. Physics and Chemistry of Solid State, 25(3), 478–484. https://doi.org/10.15330/pcss.25.3.478-484

Issue

Section

Scientific articles (Physics)