Гідротермальний синтез нанодисперсного діоксиду титану (огляд)

Автор(и)

  • М.Г. Мізілевська ДЗ "Південноукраїнський національний педагогічний університет імені К.Д. Ушинського
  • О.Ю. Оренчук Прикарпатський національний університет імені Василя Стефаника
  • В.М. Сачко Прикарпатський національний університет імені Василя Стефаника
  • О.Х. Тадеуш ДЗ "Південноукраїнський національний педагогічний університет імені К.Д. Ушинського"
  • В.О. Коцюбинський Прикарпатський національний університет імені Василя Стефаника

DOI:

https://doi.org/10.15330/pcss.17.1.98-107

Ключові слова:

діоксид титану, гідротермальний метод, морфологія, анатаз, брукіт, рутил, brookite

Анотація

Здійснено огляд літературних даних в рамках проблематики гідротермального методу синтезу нанодисперсного діоксиду титану. Систематизація даних дозволила зафіксувати загальні тенденції розвитку взаємозв’язків між умовами синтезу та структурно-морфо­ло­гічними характеристиками нанодисперсного діоксиду титану. Отримані результати повинні лягти в основу науково-обґрунтованих способів отримання функціональних матеріалів на основі ультра­дисперсного діоксиду титану з набором наперед заданих, оптимізованих для застосування в певній галузі властивостями.

Посилання

[1] S. M. Lam, J. C. Sin, A. R. Mohamed, Recent Pat. Chem. Eng. 1(3), 209 (2008).
[2] X. Сhen, S. S. Ma,. Chem. Rev. 107(7), 2891(2007).
[3] B. O’Regan, M. Grätzel, Nature. 353(6346), 737 (1991).
[4] R. Katoh, A. Furube, M. Kasuya, N. Fuke, N. Koide, L Han, J. Mater. Chem. 17(30), 3190 (2007).
[5] U. Bach, D. Lupo, P. Comte, F. Weissörtel, J. Salbeck, M.Grätzel, Nature. 395(6702), 583(1998).
[6] L. Ji, J. Rong, Z. Yang, Chem. Commun. 9, 1080 (2003).
[7] W. Dong, H. Bongard, B. Tesche, F. Marlow, Advanced Materials. 14(20), 1457 (2002).
[8] L. I. Halaoui, N. M. Abrams, T. E. Mallouk, J. Phys. Chem. B. 109(13), 6334 (2005).
[9] G. Hodes, Electrochemistry of Nanomaterials (Wiley-VCH, New York, 2001).
[10] K.-S. Ahn, S.J. Yoo, M.-S. Kang, J. W. Lee, Y. E. Sung, J. Power Sources. 168(2), 533 (2007).
[11] M. J. Chen, H. Shen, Acta Metall. Sin. (Engl. Lett.). 18(3), 275 (2005).
[12] P. I. Gouma, M. J. Mills, K. H. Sandhage, J. Am. Ceram. Soc. 83(4), 1007 (2000).
[13] E. Traversa, M. L. Di Vona, S. Licoccia, J. Sol-Gel Sci. Technol. 19(1-3), 193 (2000).
[14] M. Paulose, O.K. Varghese, G. K. Mor, C. A. Grimes, K. G. Ong, Nanotechnology. 17(2), 398 (2006).
[15] S. H. Lim, J. Luo, Z. Zhong, W. Ji, J.Lin, J. Inorg. Chem. 44(12), 4124 (2005).
[16] D. V. Bavykin, A. A. Lapkin, P. K. Plucinski, J. M. Friedrich, F. C. Walsh, J. Phys. Chem. B. 109(41), 19422 (2005).
[17] X. Hu, B. O. Skadtchenko, M. Trudeau, D. M. Antonelli, J. Am. Chem. Soc., 128(36), 11740 (2006).
[18] R. Pitchai, M. Mack, The BIG batteries industry guide. 4 (2010).
[19] M. Hibino, K. Abe, M. Mochizuki, M. Miyayama, J. Power Sources. 126(1), 139 (2004).
[20] Y.-S. Hu, L. Kienle, Y.-G. Guo, J. Maier, Adv. Mater. 18(11), 421 (2006).
[21] R. F. de Farias, Quim. Nova. 25(6), 1027 (2002).
[22] P. Pookmanee, S. Phanichphant, J. Ceram. Process. Res. 10(2), 167(2009).
[23] A. Karam, J. Iran. Chem. Soc. 7(2), S154 (2010).
[24] M. Niederberger, M. H. Bartl, G. D. Stucky, Chem. Mater. 14(10), 4364 (2002).
[25] H. Parala, A.Devi, R. Bhakta, R.A. Fischer, J. Mater. Chem. 12(6), 1625 (2002).
[26] T. J. Trentler, T. E. Denler, J. F. Bertone, A. Agrawal, L. V. Colvin, J. Am. Chem. Soc. 121(7), 1613 (1999).
[27] K. M. Reddy, D. Guin, S. V. Manorama, J. Mater. Res. 19(9), 2567 (2004).
[28] X. Huang, C. Pan, J. Cryst. Growth. 306(1), 117 (2007).
[29] S.-J. Liu, J.-Y. Gong, B. Hu, and S.-H. Yu, Cryst. Growth Des. 9(1), 203 (2009).
[30] P. D. Yang, D. Y. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, Nature 396(6707), 152 (1998).
[31] Y. Yue, Z. Gao, Chem. Commun. 18, 1755 (2000).
[32] H.-S. Yun, K. Miyazawa, H. Zhou, I. Honma, M. Kuwabara, Adv. Mat. 13(18), 1377 (2001).
[33] Z.-Y. Yan, W.-J. Zheng, Chin. J. Inorg. Chem. 22(9), 1679 (2006).
[34] B.-M. Wen, C.-Y. Liu, New J. Chem. 29(7), 969 (2005).
[35] S. W. Yang, L. Gao, Mater. Chem. Phys., 99(2), 437 (2006).
[36] G. L. Li, G. H. Wang, Nanostruct. Mater. 11 (5), 663 (1999).
[37] K. D. Kim, S. H. Kim, H. T. Kim, Colloids Surf. A. 254(1-3),99 (2005).
[38] K. T. Lim, H. S. Hwang, W. Ryoo, K. P. Johnston, Langmuir. 20(6), 2466 (2004).
[39] S. Seifried, M. Winterer, H. Hahn, Chem. Vap. Deposition. 6(5), 239 (2000).
[40] W. Huang, X. Tang, Y. Wang, Y. Koltypin, A. Gedanken, Chem. Commun. 15, 1415 (2000).
[41] Y. Zhu, H. Li, Y. Koltypin, Y. R. Hacohen, A. Gedanken, Chem. Commun. 14, 2616 (2001).
[42] J. C. Yu, L. Zhang, J. Yu, Chem. Mater. 14(11), 4647 (2002).
[43] A. B. Corradi, F. Bondioli, B. Focher, A. M. Ferrari, C. Grippo, E. Mariani, C. Villa, J. Am. Ceram. Soc. 88(9), 2639 (2005).
[44] E. Gressel-Michel, D. Chaumont, D. Stuerga, J. Colloid Interface Sci. 285(2), 674 (2005).
[45] Yamamoto, Y. Wada, H. Yin, T. Sakata, H. Mori, S.Yanagida, Chem. Lett. 10, 964 (2002).
[46] K. L. Yeung, S. T. Yau, A. J. Maira, J. M. Coronado, J. Soria, P. L. Yue, J. Catal. 219, 107 (2003).
[47] H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater. 7(4), 663 (1995).
[48] S. Y. Chae, M. K. Park, S. K. Lee, T. Y. Kim, S. K. Kim, W. I. Lee, Chem. Mater. 15(17), 3326 (2003).
[49] X. L. Li, Q. Peng, J. X. Yi, X. Wang, Y. D. Li, Chem. Eur. J. 12(8), 2383 (2006).
[50] J. Xu, J. P. Ge, Y. D. Li, J. Phys. Chem. B. 110(6), 2497 (2006).
[51] X. Wang, J. Zhuang, Q. Peng, Y. D. Li, Nature. 437(7055), 121 (2005).
[52] C. S. Kim, B. K. Moon, J. H. Park, S. T. Chung, S. M. Son, J. Cryst. Growth. 254(3-4), 405 (2003).
[53] J. W. Gao, H. Yang, Rare Metal Mat. Eng. 36, 303 (2007).
[54] K. Y. Jung, S. B. Park, J. Photochem. Photobiol. A: Chem. 127, 117 (1999).
[55] Q. Zhang, L. Gao, J. Guo, Appl. Catal. B: Environ. 26, 207 (2000).
[56] V. A. Yasir, P. N. Mohandas, K. K. M. Yusuff, Int. J. Inorg. Mater. 3, 593 (2001).
[57] A. Sclafani, L. Palmisano, M. Schiavello, J. Phys. Chem. 94, 829 (1990).
[58] N. R. C. F. Machado, V. S. Santana, Catal. Today. 107-108, 595 (2005).
[59] Y. Q. Zheng, E. W. Shi, S. X. Cui, W. J. Li, X. F. Hu, J. Am. Ceram. Soc. 83(10), 2634 (2000).
[60] Z. Yanqing, S. Erwei, C. Suxian, L. Wenjun, H. Xingfang, J. Mater. Scien. Lett. 19, 1445 (2000).
[61] T. Nagase, T. Ebina, T. Iwasaki, K. Hayashi, Y. Onodera, M. Chatteijee, Chem. Lett. 9, 911 (1999).
[62] Ch. Wang, J. Y. Ying, Chem. Mater. 11, 3113 (1999).
[63] K. Yanagisawa, Y. Yamamoto, Q. Feng, N. Yamasaki, J. Mater. Res. 13(4), 825 (1998).
[64] V. A. Kuznetsov, Issledovanie processov kristalizacii (Nauka, Moskva, 1970).
[65] J. Ovenstone, K. Yanagisawa, J. Phys. Chem. B. 103(37), 7781 (1999).
[66] J. Ovenstone, K. Yanagisawa, Chem. Mater. 11, 2770 (1999).
[67] S. Ito, S. Yoshida, T. Watanabe, Chem. Lett. 1, 70 (2000).
[68] W. W. So, S. B. Park, K. J. Kim, S. J. Moon, J. Coll. Interf. Sei. 191, 398 (1997).
[69] K. Byrappa, K. M. Lokanatha Rai, M. Yoshimura, Environ. Technol. 21(10), 1085 (2000).
[70] Y. Li, N. H. Lee, D. S. Hwang, J. S. Song, E. G. Lee, S. J. Kim, Langmuir. 20(25), 10838 (2004).
[71] Q. D. Truong, T. H. Le, J.-Y. Liu, C.-C. Chung, Y.-C. Ling, Appl. Catal. A. 437, 28 (2012).
[72] A. Testino, I. R. Bellobono, V. Buscaglia, C. Canevali, M. D’Arienzo, S. Polizzi, R. Scotti, F. Morazzoni, J. Am. Chem. Soc. 129, 3564 (2007).
[73] B. Zhao, L. Lin, D. He, J. Mater. Chem. A. 1(5), 1659 (2013).
[74] R. Petryshyn, Z. Yaremko, M. Soltys, Bull. of Lviv University. Chemistry. 52, 322 (2011).
[75] Y. Zou, X. Tan, T. Yu, Y. Li, Q. Shang, W.Wang, Mater. Lett. 132, 182 (2014).
[76] Z. Sun, J. H. Kim, Y. Zhao, F. Bijarbooneh, V. Malgras, Y. Lee, S.X. Dou, J. Am. Chem. Soc. 133(48), 19314 (2011).
[77] M. Andersson, L. Österlund, S. Ljungstroem, A. Palmqvist, J. Phys. Chem. B. 106(41), 10674 (2002).
[78] T. P. Chou, Q. Zhang, G. Cao, J. Phys. Chem. C. 111(50), 18804 (2007).
[79] S. Nakade, Y.Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, J. Phys. Chem. B. 107(33), 8607 (2003).
[80] Z. Zhang, C. C. Wang, R. Zakaria, J. Y. Ying, J. Phys. Chem. B. 102(52), 10871 (1998).
[81] Y. V. Kolen'ko, A. A. Burukhin, B. R. Churagulov, N. N. Oleinikov, Inorg. Mater. 40(8), 822 (2004).
[82] Y. V. Kolen'ko, A. A. Burukhin, B. R. Churagulov, N. N. Oleinikov, Mater. Lett. 57(5), 1124 (2003).
[83] S. Karvinen, R. J. Lamminmäki, Solid State Sci. 5(8), 1159 (2003).
[84] M. Inagaki, Y. Nakazawa, M. Hirano, Y. Kobayashi, M. Toyoda, Int. J. Inorg. Mater. 3(7), 809 (2001).
[85] D. V. Bavykin, V. P. Dubovitskaya, A. V. Vorontsov, V. N. Parmon, Res. Chem. Intermed. 33, 449 (2007).
[86] B. Zhao, F. Chen, Y. Jiao, J. Zhang, J. Mater. Chem. 20(37), 7990 (2010).
[87] Y. Jiao, B. Zhao, F. Chen, J. Zhang, Cryst Eng Comm. 13(12), 4167 (2011).
[88] B. Zhao, F. Chen, Q. Huang, J. Zhang, Chem. Commun. 34, 5115 (2009).
[89] X. Shen, B. Tian, J. Zhang, Catal. Today. 201, 151 (2013).
[90] A. N. Kozyrev, T. J. Dougherty, R. K. Pandey, Chem. Commun. 4, 481 (1998).

##submission.downloads##

Опубліковано

2016-03-15

Як цитувати

Мізілевська, М., Оренчук, О., Сачко, В., Тадеуш, О., & Коцюбинський, В. (2016). Гідротермальний синтез нанодисперсного діоксиду титану (огляд). Фізика і хімія твердого тіла, 17(1), 98–107. https://doi.org/10.15330/pcss.17.1.98-107

Номер

Розділ

Наукові статті

Статті цього автора (авторів), які найбільше читають

1 2 3 > >>