Solar cells based on CdTe thin films
DOI:
https://doi.org/10.15330/pcss.22.4.817-827Keywords:
thin films, solar cells, CdTe, photovoltaic cells, modulesAbstract
An analysis of the use of semiconductor solar cells based on thin-film cadmium telluride (CdTe) in power engineering is carried out. It is shown that the advantages of thin-film technology and CdTe itself as a direct-gap semiconductor open up the prospect of large-scale production of competitive CdTe solar modules. The physical and technical problems of increasing the efficiency of CdS/CdTe heterostructure solar cells, which are significantly inferior to the theoretically possible value in mass production, are discussed. The state of CdTe thin-film solar cells, which make CdTe a suitable material for ground-based photoelectric conversion of solar energy, the historical development of the CdTe compound, the application of CdTe thin films, the main methods and strategies of device production, device analysis and fundamental problems related to the future development of thin-film modules based on cadmium telluride.
References
L.A. Kosyachenko, & E.V. Grushko, Ukr. Phys. Journ., Rev., 7(1), 3-30, (2012); http://archive.ujp.bitp.kiev.ua/files/reviews/7/1/r070101pu.pdf.
Amin, Nowshad, et al., Encyclopedia of sustainable technologies, 11 26 (2017); https://doi.org/10.1016/B978-0-12-409548-9.10092-2.
S. Chander, & M.S. Dhaka, Materials Science in Semiconductor Processing, 40, 708-712, (2015); https://doi.org/10.1016/j.mssp.2015.07.063.
X. Wu, Solar energy, 77(6), 803-814 (2004); https://doi.org/10.1016/j.solener.2004.06.006.
S.D Gunjal, Y.B. Khollam, S.R. Jadkar, T. Shripathi, V.G. Sathe, P.N. Shelke, & K.C. Mohite, Solar energy, 106, 56-62 (2014); https://doi.org/10.1016/j.solener.2013.11.029.
T.M. Mazur, V.P. Makhniy, V.V. Prokopiv, M.М. Slyotov, Journal of Nano- and Electronic Physics, 9(5), 05047 (2017); http://doi.org/10.21272/jnep.9(5).05047 .
M. Gloeckler, In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). 1292-1292, IEEE (2016); https://doi.org/10.1109/PVSC.2016.7749823.
L.A. Kosyachenko, Thin Film Photovoltaics as a Mainstream of Solar Power Engineering: Solar Cells-Thin-Film Technologies, Ed: Kosyachenko LA. InTech, Janeza Trdine, 9(51000), 1-38 (2011).
V.V. Prokopiv, L.I. Nykyruy, O.M. Voznyak, B.S. Dzundza, I.V. Horichok, Ya.S. Yavorskyi, O.M. Matkivskyi, T.M. Mazur, Physics and chemistry of solid state, 18(3), 372-376 (2017); https://doi.org/10.15330/pcss.18.3.372-375.
M.A. Green, Nature Energy, 1(1), 1-4 (2016); https://doi.org/10.15330/pcss.18.3.372-375.
www.scopus.com
M. A. Green, E.D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, & A.W. Ho-Baillie, Prog Photovolt Res Appl, 27, 565-575 (2019); https://doi.org/10.1002/pip.3171.
M.A. Green, E.D. Dunlop, J. Hohl‐Ebinger, M. Yoshita, N. Kopidakis, & A. W. Ho‐Baillie, Progress in Photovoltaics: Research and Applications, 28(1), 3-15 (2020); https://doi.org/10.1002/pip.3228 .
T. Mazur, V. Prokopiv, L. Turovska Molecular Crystals and Liquid Crystals, 671(1), 85-89 (2018); https://doi.org/10.1080/15421406.2018.1542088.
J. Margottet, Annals Scientifiques de l’Ecole Normale Superieure, 2nd edn, Vol 8, pp 247–298 (1879).
R. Frerichs, Phys. Rev. 72, 594–601 (1947); https://doi.org/10.1103/PhysRev.72.594 .
D. Jenny, R. Bube, Phys. Rev. 96, 1190–1191 (1954); https://doi.org/10.1103/PhysRev.96.1190 .
F. Kruger, de Nobel D, J. Electron. 1, 190–202 (1955).
D. de Nobel, Philips Res. Rpts 14, 361–399 and 430–492 (1959).
J. Loferski, J. Appl. Phys. 27, 777–784 (1956); https://doi.org/10.1063/1.1722483.
Rappaport P, RCA Rev. 20, 373–397 (1959); https://doi.org/10.1016/0038-092X(59)90002-7.
J Mimilya-Arroyo, Y Marfaing, G Cohen-Solal, R Triboulet, Sol. Energy Mater. 1, 171 (1979).
A Fahrenbruch, R Bube, Fundamentals of Solar Cells, Academic Press, New York, 418–460 (1983).
E Justi, G Schneider, J Seredynski, J. Energy Conversion 13, 53–56 (1973); https://doi.org/10.1016/0013-7480(73)90101-0.
K Mitchell, A Fahrenbruch, R Bube, J. Appl. Phys. 48, 829–830 (1977); https://doi.org/10.1063/1.323429.
T Nakazawa, K Takamizawa, K Ito, Appl. Phys. Lett. 50, 279–280 (1987); https://doi.org/10.1063/1.98224.
R Muller, R Zuleeg, J. Appl. Phys. 35, 1550–1556 (1964); https://doi.org/10.1063/1.1713665.
R Dutton, Phys. Rev. 112, 785–792 (1958); https://doi.org/10.1103/PhysRev.112.785 .
K Yamaguchi, H Matsumoto, N Nakayama, S Ikegami, Jpn. J. Appl. Phys. 16, 1203–1211 (1977); https://iopscience.iop.org/article/10.1143/JJAP.16.1203/meta .
E Adirovich, Y Yuabov, D Yugadaev, Sov. Phys. Semicond. 3, 61–65 (1969).
D Bonnet, H Rabenhorst, Conf. Rec. 9th IEEE Photovoltaic Specialist Conf ., pp 129–132 (1972).
B. E McCandless,., & J. R. Sites, (2011). Cadmium telluride solar cells. Handbook of photovoltaic science and engineering, 600-641.
X. Wu et al., Conf. Rec. 17th European Photovoltaic Solar Energy Conversion, pp 995–1000 (2001).
B. Bas¸ol, Conf. Rec. 21st IEEE Photovoltaic Specialist Conf ., pp 588–594 (1990).
P Meyers, C Liu, Frey T, U.S. Patent 4,710,589 (1987); https://patents.google.com/patent/US4710589A .
B McCandless, H Hichri, G Hanket, R Birkmire, Conf. Rec. 25th IEEE Photovoltaic Specialist Conf ., pp 781–785 (1996).
J Britt, C Ferekides, Appl. Phys. Lett. 62, 2851–2852 (1993); https://doi.org/10.1063/1.109629 .
S Kasap,. (2006). Springer handbook of electronic and photonic materials. Springer Science & Business Media; https://www.twirpx.com/file/1896023/ .
A. Rothwarf, & K. W. Böer, (1975). Progress in Solid State Chemistry, 10, 71-102.
A.L. Rogach, T. Franzl, T.A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, & J.F. Donegan, (2007). The Journal of Physical Chemistry C, 111(40), 14628-14637; https://doi.org/10.1021/jp072463y .
J. Jasieniak, B.I. MacDonald, S.E. Watkins, & P. Mulvaney, (2011). Nano letters, 11(7), 2856-2864; https://doi.org/10.1021/nl201282v .
T. Markvart, & A. McEvoy, (Eds.). (2003). Practical handbook of photovoltaics: fundamentals and applications. Elsevier; https://www.elsevier.com/books/practical-handbook-of-photovoltaics/mcevoy/978-1-85617-390-2 .
I Matulionis, S Nakada, A Compaan, Conf. Rec. 26th IEEE Photovoltaic Specialists Conf ., pp 491–494 (1997).
Kirk-Othmer Encyclopedia of Chemical Technology, 3rd edn, Vol. 11, pp 807–880, John Wiley & Sons, Inc., New York (1980).
R Brown, U.S. Geological Survey Minerals Yearbook, U.S.G.S., 67.1–67.4 (2000).
B Andersson, Prog. Photovolt. Res. Appl. 8, 61–76 (2000); https://doi.org/10.1002/(SICI)1099-159X(200001/02)8:1%3C61::AID-PIP301%3E3.0.CO;2-6 .
P Gerhardinger, R McCurdy, Mat. Res. Soc. Symp. Proc. 426, 399–410 (1996); https://doi.org/10.1557/PROC-426-399 .
P Maycock (ed.), Photovoltaic News, 20 (Feb, 2001).
D Rose et al., Conf. Rec. 28th IEEE Photovoltaic Specialist Conf ., pp 428–431 (2000).
V Fthenakis, H Kim, E Alsema, Environ. Sci. Technol. 42, 2168–2174 (2008); https://doi.org/10.1021/es071763q .
J Sites, J Pan, Thin Solid Films 515, 6099–6102 (2007); https://doi.org/10.1016/j.tsf.2006.12.147 .
V Plotnikov, D Kwon, K Wieland, A Compaan, Conf. Rec. 34th IEEE Photovoltaic Specialists Conf . pp 1435–1438 (Philadelphia, 2009).
T Coutts et al., Prog. Photovolt: Res. Appl. 11, 359–375 (2003); https://doi.org/10.1002/pip.491 .
M Nell, A Barnett, IEEE Trans. Elec. Dev. ED-34, 257–265 (1987); https://doi.org/10.1109/T-ED.1987.22916
J McClure et al., Sol. Energy Mater. Sol. Cells 55, 141–148 (1998); https://doi.org/10.1016/S0927-0248(98)00054-3 .
A Romeo, D Batzner, H Zogg, A Tiwari, Mat. Res. Soc. Symp. Proc. 668, H3.3.1–H3.3.6 (2001); https://doi.org/10.1557/PROC-668-H3.3 .
T Takamoto, T Agui, H Kurita, M Ohmori, Sol. Energy Mater. Sol. Cells 49, 219–225 (1997); https://doi.org/10.1016/S0927-0248(97)00198-0 .
K Zweibel, Conf. Rec. IECEC (Denver, CO, 1988).