Вплив товщини проміжного шару Ru на електрофізичні властивості тришарової плівкової системи Co/Ru/Co
DOI:
https://doi.org/10.15330/pcss.23.3.531-535Ключові слова:
тришарова плівкова система, пошарова конденсація, електрофізичні властивості, питомий опір, термічний коефіцієнт опоруАнотація
У даній роботі були проведені дослідження структурно-фазового стану та електрофізичних властивостей тришарових плівкових систем Co/Ru/Co/Sub при зміні товщини шару Ru, dRu = 5-20 нм. Було показано, що як у свіжо сконденсованому стані, так і після відпалювання до 800 К, фазовий стан системи відповідає ГЩП-Co + ГЩП-Ru. Були отримані залежності питомого опору та температурного коефіцієнту опору як функції dRu. Показано, що зміна величини питомого опору на першому циклі термообробки стає тим більш сильною, чим більше товщина шару Ru. Величина температурного коефіцієнту опору має порядок 10-4 та збільшується з 5,05×10-4 до 6,42×10-4 K-1 при зміні товщини dRu в діапазоні 0-20 нм.
Посилання
W. Zhao, C. Liu, W. Huang, C. Hou, Z. Chen, Z. L-Y. Yin. Positive and negative magnetoresistances in Co/Cu/Ni spin-valves, Mater. Lett. 240, 124-127 (2019); https://doi.org/10.1016/j.matlet.2018.12.134.
M.Z. Iqbal, G. Hussain, S. Siddique, M.W. Iqbal, Graphene spin valve: An angle sensor, J. Magn. Magn. Mater. 432, 135-139 (2017);http://dx.doi.org/10.1016/j.jmmm.2017.02.004.
K. Zhao, Y. Xing, J. Han, J. Feng, W. Shi, B. Zhang, Z. Zeng. Magnetic transport property of NiFe/WSe2/NiFe spin valve structure, J. Magn. Magn. Mater. 432, 10-13 (2017); http://dx.doi.org/10.1016/j.jmmm.2017.01.066.
H. Piskin, N. Akdogan. Interface-induced enhancement of sensitivity in NiFe/Pt/IrMn-based planar hall sensors with nanoTesla resolution, Sensors and Actuators A 292, 24-29 (2019); https://doi.org/10.1016/j.sna.2019.04.003.
Vijay V. Kondalkar, X. Li, S. Yang, K. Leea. Current Sensor based on Nanocrystalline NiFe/Cu/NiFe, Thin Film, Procedia Eng. 168, 675 - 679 (2016); https://doi:10.1016/j.proeng.2016.11.245.
V. Su Luong, A. Tuan Nguyen, A. Tue Nguyen. Exchange biased spin valve-based gating flux sensor, Measurement 115, 173-177 (2018); https://doi.org/10.1016/j.measurement.2017.10.038.
M.J. Almeidaa, T. Götzea, O. Ueberschära, P. Matthesc, M. Müllerd, R. Eckea, H. Exnerd, S.E. Schulz. Monolithic integration of 2D spin valve magnetic field sensors for angular sensing, Mater. Today: Proceedings 2, 4206-4211 (2015); https://doi.org/10.1016/j.matpr.2015.09.004.
A.A. Kamashev, P.V. Leksin, N.N. Garif‟yanov. Superconducting spin-valve effect in a heterostructure containing the Heusler alloy as a ferromagnetic layer, J. Magn. Magn. Mater. 459, 7-11 (2018); https://doi.org/10.1016/j.jmmm.2018.01.085.
C.J. Durrant, L.R. Shelford, R.A.J. Valkass. Dependence of spin pumping and spin transfer torque upon Ni81Fe19 thickness in Ta/Ag/Ni81Fe19/Ag/Co2MnGe/Ag/Ta spin-valve structures, Phys. Rev. B 96, 144421 (2017); https://doi.org/10.1103/PhysRevB.96.144421.
T.S. Ramulu, R. Venu, B. Sinha. Synthesis and cysteamine functionalization of CoFe/Au/CoFe nanowires, Thin Solid Films 546, 255-258 (2013); https://doi.org/10.1016/j.tsf.2013.04.080.
R. Matsumoto, H. Arai, S. Yuasa. Spin-transfer-torque switching in a spin-valve nanopillar with a conically magnetized free layer, Appl. Phys. Express. 8, 063007–1–4 (2015). https://doi.org/10.7567/APEX.8.063007.
G.W. Anderson, Y. Huai, M. Pakala. Spin-valve thermal stability: The effect of different antiferromagnets, J. Appl. Phys. 8, 5726-5728 (2000); https://doi.org/10.1063/1.372502.
B. Kocaman, N. Akdoğan. Reduction of shunt current in buffer-free IrMn based spin-valve structures, J. Magn. Magn. Mater. 456, 17-22 (2018); https://doi.org/10.1063/1.372502.
P. Wiśniowski, T. Stobiecki, J. Kanak. Influence of buffer layer texture on magnetic and electrical properties of IrMn spin valve magnetic tunnel junctions, Journal of Applied Physics 100, 013906–1–8 (2006); https://doi.org/10.1063/1.2209180.
P.H. Chan, X. Li, P.W.T. Pong. Spin valves with conetic based synthetic ferrimagnet free layer, Vacuum 140, 111-112 (2017); https://doi.org/10.1016/j.vacuum.2016.09.010.
A.G. Kolesnikov, V.S. Plotnikov, E.V. Pustovalov. Composite topological structure of domain walls in synthetic antiferromagnets, Sci. Report. 8, 15794–1–9 (2018); https://doi.org/10.1038/s41598-018-33780-6.
X.L. Tang, H. Su, H.W. Zhang. Ultra-low-pressure sputtering to improve exchange bias and tune linear ranges in spin valves, J. Magn. Mag.Mater., 429, 65-68 (2017). http://dx.doi.org/10.1016%2Fj.jmmm.2017.01.021.
I.M. Pazukha, I.E. Protsenko. Fe/Cr and Cu/Cr film pressure-sensitive element, Tech. Phys. 55, 571-575 (2010); https://doi.org/10.1134/S1063784210040249.
D. Samal, D. Venkateswarlu, P.S. Anil Kumar. Influence of finite size effect on magnetic and magnetotransport properties of La0.5Sr0.5CoO3 thin films, Solid State Commun. 150 (13–14), 576-580 (2010); https://doi.org/10.1016/j.ssc.2010.01.003
S.I. Protsenko, L.V. Odnodvorets, I.Yu. Protsenko, Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications, ed. By O. Fesenko, L. Yatsenko (Springer, Switzerland, 2015), p.156, https://doi.org/10.1007/978-3-319-06611-0_28.
I.M. Pazukha, Y.O. Shkurdoda, A.M. Chornous, L.V. Dekhtyaruk. Magnetic and magnetoresistive properties of nanocomposites based on Co and SiO, International Journal of Modern Physics B 33 (12), 1950113 (2019); https://doi.org/10.1142/S0217979219501133.
Yu.O. Shkurdoda, V.B. Loboda, L.V. Dekhtyaruk. Specific conductivity of three-layer polycrystalline films, Metallofizika i Noveishie Tekhnologii 30, 295 (2008); https://www.scopus.com/record/display.uri?eid=2-s2.0-49649087930&origin=resultslist.
L. Moraga, R. Henriquez, B. Solis. Quantum theory of the effect of grain boundaries on the electrical conductivity of thin films and wires, Phys. B. 39, 470-471 (2015); http://dx.doi.org/10.1016/j.physb.2015.04.034.
O.V. Pylypenko, I.M. Pazukha., A.S. Ovrutskyi, L.V. Odnodvorets. Electrophysical and Magnetoresistive Properties of Thin Film Alloy Ni80Fe20, Journal of Nano- and Electronic Physics 8, 03022 (2016); https://doi.org/10.21272/jnep.8(3).03022.
I.V. Cheshko, A.M. Lohvynov, A.I. Saltykova, S.I. Protsenko. The Structural-Phase State and Diffusion Process in Film Structures Based on Co and Ru, Journal of Nano- and Electronic Physics 10, 06016 (2018); https://doi.org/10.21272/jnep.10(6).06016.
A.M. Lohvynov, M.V. Kostenko, I.V. Cheshko, S.I. Protsenko. Structural-phase state and electrophysical properties of Ru thin films, 2016 International Conference on Nanomaterials: Application & Properties (NAP) 01NTF22 (2016); https://doi.org/10.1109/NAP.2016.7757255.
I.Yu. Protsenko, L.V. Odnodvorets, A.M. Chornous. Electroconductivity and tensosensibility of multilayer films, Metallofizika i Noveishie Tekhnologii 20(1), 36-43 (1998); https://www.scopus.com/record/display.uri?eid=2-s2.0-0342476101&origin=resultslist&sort=cp-f.