Зонна структура та оптичні властивості кристалів Ag3AsS3
DOI:
https://doi.org/10.15330/pcss.24.1.17-22Ключові слова:
Ag3AsS3, зонна структура, теорія функціонала густини, оптичні спектриАнотація
У роботі проведено розрахунок зонної структури у точках високої симетрії першої зони Бріллюена і вздовж ліній, що їх з’єднують за допомогою програми CASTEP в якій реалізований псевдо потенціальний метод з базисом у вигляді плоских хвиль. Розраховані значення параметрів ґратки з використанням GGA функціоналів добре узгоджуються з експериментальними даними. Згідно зонної діаграми, побудованої використовуючи GGA метод для кристала Ag3AsS3, заборонена зона є непрямрого типу. Розраховане нами значення ширини забороненої зони становить = 1,22 еВ. Експериментальне значення ширини забороненої зони оціненої методом Тауца становить = 2,01 еВ, = 2,17 еВ.
Розраховано повну та парціальну густини станів N(E) для внесків окремих атомів встановлено, що вершина валентної зони утворена 3р-станами сірки, а дно зони провідності утворене 5s-станами срібла та 3p-станами сірки.
Посилання
V.V. Zalamai, A.V. Tiron, I.G. Stamov, S.I. Beril, Wavelength modulation optical spectra of Ag3AsS3 crystals in the energy gap, Optical Materials, 129, 112560 (2022); https://doi.org/10.1016/j.optmat.2022.112560.
H. Lin, W.B. Wei, H. Chen, X.T. Wu, Q.L. Zhu, Rational design of infrared nonlinear optical chalcogenides by chemical substitution, Coord. Chem. Rev. 406, 213150 (2020); https://doi.org/10.1016/j.ccr.2019.213150.
Kui Wu, Shilie Pa,. A review on structure-performance relationship toward the optimal design of infrared nonlinear optical materials with balanced performances, Coord. Chem. Rev. 377, 191 (2018); https://doi.org/10.1016/j.ccr.2018.09.002.
Fei Liang, Lei Kang, Zheshuai Lin, and Yicheng Wu, Mid-Infrared Nonlinear Optical Materials Based on Metal Chalcogenides: Structure–Property Relationship Cryst, Growth Des., 17(4), 2254 (2017); https://doi.org/10.1021/acs.cgd.7b00214.
A. Abudurusuli, J. Li, S. Pan, A review on the recently developed promising infrared nonlinear optical materials, Dalt. Trans. 50, 3155 (2021); https://doi.org/10.1039/D1DT00054C.
V. Kavaliukė, T. Šalkus, A. Kežionis, M.M. Pop, I.P. Studenyak, Ag3AsS3-As2S3 composite: Detailed impedance spectroscopy study, Solid State Ionics, 383, 115971 (2022); https://doi.org/10.1016/j.ssi.2022.115971.
V. S. Bilanych, R. Yu. Buchuk, K. V. Skubenych, I. I. Makauz, I. P. Studeniak, Relaxation Processes in Silver Containing Superionic Composites in the System Ag3AsS3-As2S3, Physics and Chemistry of Solid State, 13 (3), 625 (2012). Rezhym dostupu: http://nbuv.gov.ua/UJRN/PhKhTT_2012_13_3_12.(In Ukrainian)
V. A. Bordovsky, N. Yu. Gunia, R. A. Castro, High-frequency dielectric study of proustite crystals Ag3AsS3, Journal of Physics: Conference Series, 572, 012019 (2014); https://doi.org/10.1088/1742-6596/572/1/012019.
O.V. Smitiukh, O.V. Marchuk, Y.M. Kogut, V.O. Yukhymchuk, N.V. Mazur, G.L.Myronchuk, S.M. Ponedelnyk, O.I. Cherniushok, T.O. Parashchuk, O.Y. Khyzhun, К.T. Wojciechowski, A.O. Fedorchuk, Effect of rare-earth doping on the structural and optical properties of the Ag3AsS3 crystals, Optical and Quantum Electronics, 54:4, 224 (2022); https://doi.org/10.1007/s11082-022-03542-w.
S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, First principles methods using CASTEP, Z. Kristallogr, 220, 567 (2005); https://doi.org/10.1524/zkri.220.5.567.65075.
P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136, B864 (1964); https://doi.org/10.1103/PhysRev.136.B864.
D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B. 41, 7892 (1990); https://doi.org/10.1103/PhysRevB.41.7892.
J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23, 5048 (1981); https://doi.org/10.1103/PhysRevB.23.5048.
H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188 (1976); https://doi.org/10.1103/PhysRevB.13.5188.
B.G. Pfrommer, M. Côté, S.G. Louie, M.L. Cohen, Relaxation of Crystals with the Quasi-Newton Method, Journal of Computational Physics, 131, 233 (1997); https://doi.org/10.1006/jcph.1996.5612.
A. Gagor, A. Pawłowski, A. Pietraszko, Silver transfer in proustite Ag3AsS3 at high temperatures: Conductivity and single-crystal X-ray studies, J. Solid State Chem. 182(3), 451 (2009); DOI:10.1016/j.jssc.2008.11.005.
Ya.O. Dovgii, I.V. Kityk, Band Structure and Nonlinear Optical Susceptibilities of Proustite (Ag3AsS3), Phys. Stat. Sol. (b), 166, 395 (1991); https://doi.org/10.1002/pssb.2221660208.
Marvin J. Weber, Handbuk of optical materials (CRC Press, 2002).
Mark Fox, Optical properties of solids (Oxford University Press, Oxford (2001)).
M. Dressel, B. Gompf, D. Faltermeier, A.K. Tripathi, J. Pflaum and M. Schubert, Kramers-Kronig-consistent optical functions of anisotropic crystals: generalized spectroscopic ellipsometry on pentacene, Opt.Express 16. 19770- (2008); https://doi.org/10.1364/OE.16.019770.
Ya.O. Dovhyj I.V. Kityk, The electronic structure and optics of the nonlinear crystals. 176 p. (Monograph. –Lviv. Svit publisher. 1996).
Sonali Saha, T.P. Sinha and Abhijiti Mookerjee, Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3, Phys. Rev. B 62, 8828 (2000); https://doi.org/10.1103/PhysRevB.62.8828.
M.Ya. Rudysh, P.A. Shchepanskyi, A.O. Fedorchuk, M.G. Brik, V.Yo. Stadnyk, G.L. Myronchuk, E.A. Kotomin, M. Piasecki, Impact of anionic system modification on the desired properties for CuGa(S1−xSex)2 solid solutions, Computational Materials Science, 196, 110553 (2021); https://doi.org/10.1016/j.commatsci.2021.110553.
M.Ya. Rudysh, M. Piasecki, G.L. Myronchuk, P.A. Shchepanskyi, V.Yo. Stadnyk, O.R. Onufriv, M.G. Brik, AgGaTe2 – The thermoelectric and solar cell material: Structure, electronic, optical, elastic and vibrational features, Infrared Physics and Technology, 111, 103476 (2020); https://doi.org/10.1016/j.infrared.2020.103476.